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Abstract  

Level 3 autonomous driving vehicle, the driver needs to drive himself when the system is in an emergency. 
Therefore, the system to detect the lowering of arousal degree is desired. Commercially available drowsiness detection 
technologies can be roughly classified into two methods. These include: 1) Vehicle-based methods; 2) Driver behavior-
based methods. These two techniques may only work if drivers are fully drowsy and the risk of an accident increases. 
So far, there has been proposed the model that detects drowsiness instantaneously on facial skin temperature distribution 
using convolutional neural network (CNN). However, CNN, a supervised learning algorithm, has difficulty preparing 
datasets for all drowsiness levels. To solve this problem, we focused on an unsupervised learning algorithm, the variational 
autoencoder (VAE). In this study, we tried to construct a model to detect drowsiness using VAE by using only the facial 
skin temperature distribution during arousal. The datasets were prepared by conducting the drowsiness induction and 
suppression experiment. 

 

1. Introduction 

Autonomous driving technology is being actively studied. Level 3 autonomous driving vehicle as defined by 

Society of Automotive Engineers (SAE) [1], the driver does not need to monitor traffic conditions when the autonomous 

driving system is normal, but the driver needs to avoid danger himself when the system is in an emergency [2]. Therefore, 
drivers need to maintain concentration and suppress drowsiness in order to cope with the switching of driving in an 
emergency, and a system to detect the lowering of arousal degree is desired [3]. 

Commercially available drowsiness detection technologies can be roughly classified into two methods. These 
include: 1) Vehicle-based methods; 2) Driver behavior-based methods. Examples of 1) are drowsiness detection from the 
state where the vehicle deviates from the lane and repeats meandering operation [4][5]. Examples of 2) are drowsiness 
detection from closed eyes or continuous blinking [6][7]. These two techniques may only work if drivers are fully drowsy 
and the risk of an accident increases. 

In contrast to the preceding argument, the method that uses the physiological information of the driver may be 
able to detect the sign of drowsiness according to the physiological mechanism [8]. So far, studies have been reported to 
estimate drowsiness from physiological indicators such as brain wave (EEG) [9], electroencephalogram (EOG) [10], heart 
rate [11], and hemodynamics [12]. However, the physical and mental load on the driver can be large, since these 
physiological indicators require a sensor to be directly attached to the driver. 

We previously evaluated drowsiness states based on facial skin temperature distribution taken by infrared 
thermography, which can record remotely. It has been clarified that the facial skin temperature rises with drowsiness, which 
is one of the autonomic nervous system indices that may be a sign of drowsiness [13]. So far, there has been proposed 
the model that detects drowsiness instantaneously on facial skin temperature distribution using convolutional neural 
network (CNN) [14]. Therefore, the features extracted automatically from the facial skin temperature with drowsiness 
induction by deep learning were observed [15]. This study had two limitations. These include: Limitation 1) It is not clear 
that features related to drowsiness could be extracted because skin temperature has various fluctuation factors; Limitation 
2) Difficult to estimate drowsiness because a dataset for all drowsiness levels must be prepared due to the characteristics 
of CNN. 

Given this background, we worked with two approaches. First of all, in order to solve Challenge 1), the 
experiment was conducted to induce drowsiness induction and drowsiness suppression to confirm whether the desired 
feature can be extracted. As a next step, in order to solve Challenge 2), the variational autoencoder (VAE) [16], a deep 
learning algorithm that has been successful in the field of anomaly detection in image space, was adopted. In this study, 
we defined "drowsy" as "anomaly" and tried to extract features related to drowsiness using only the facial skin temperature 
distribution during arousal. 

The objective of study is detecting drowsiness using facial skin temperature distribution to prevent traffic accident.  
In order to extract the drowsiness-related features, we constructed the model that extracts the drowsiness-related features 
and detects drowsiness by learning only the facial skin temperature during arousal using VAE. In this paper, the task of 
making the subject repeat drowsiness induction and suppression was examined by experiment. Further, using the data set 
obtained by the experiment, the feature extraction regarding drowsiness was performed using VAE. 
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2. Experiment 

2.1.  Experimental system 

The preliminary study was conducted in order to carry out an experiment in which drowsiness induction and 
drowsiness suppression were periodically evoked. Preliminary experiments are described here. The measured 
physiological indices were the following: facial skin temperature (FST), electroencephalograms (EEG) as brainwaves. The 
bioinstrumentation system consisted of an infrared thermography device (A-600 Series, FLIR) and wireless biological 
measuring equipment (Polymate Mini AP108, TEAC Co.). The infrared thermography device was set at a distance 100 cm 
from the face. Thermal images were created at 1-s sampling intervals. The size of each thermal image was 640 × 480 

pixels, and the temperature resolution was less than 0.1 ℃. The infrared emissivity of the skin was ε =0.98. The wireless 

biological measuring equipment recorded the EEG with a sampling frequency of 500 Hz. To evaluate relative an alpha 
waves, EEG was recorded by a referential electrode derivation method. The EEG electrode was fixed at parietal (Pz) 
positions according to the international 10-20 system. The right ear lobe (A2) was used as a reference. Before data 
acquisition, the contact impedance between the EEG electrodes and scalp was calibrated to be less than 10 kΩ 

Facial expressions (for example, blink cycles and lips movements) represent characteristic changes in 
accordance with awareness level [17]. In this study, an infrared camera recording the subject’s face was placed 60 cm in 
front of the subject to assess facial expression. 

 

 
Fig. 1. Experiment image  

 

2.2.  Procedure and conditions 

The subject was a man (age: 31 years). He was fully informed about the experiment and objectives of our study 
before participation and signed a consent form. The experiments were carried out during the day to control for potential 
circadian rhythm effects. The experiments began after the subject had been in the room for at least 30 minutes so that 
they could become acclimated to the experimental room temperature. 

The experiment consisted of four 3-min resting state segments, “Rest 1” ,“Rest 2”, “Rest 3”, “Rest 4”, and a 15-
min induced drowsiness segment, “Drowsiness induction”, and a 5-min suppressed drowsiness segment, “Drowsiness 
suppression”, and a 30-sec break time segment, “Break”. In each “Rest” segment, subject was instructed to sit in a rested 
state. Furthermore, the “Rest” segment consisted of three 1-min resting state segments, “First opened eyes(FOE)”, 
“Second closed eyes(SCE)”, “Last opened eyes(LOE)”. In the “Drowsiness induction”, subject was instructed to gaze at 
the video for, shown in Fig. 2, with only eye movements in order to induce drowsiness. The image for inducing drowsiness 
was displayed on an LCD monitor placed in front of the subject. The circular moving target moved to draw a circular orbit. 
One cycle was set to two seconds. In the “Break”, subject stretched to reduce her fatigue. In the “Drowsiness suppression”, 
to begin with, the amazing sound was played for about 20 sec. And then, for about 5 minutes, arithmetic questions were 
presented on LCD monitor, while displaying each for 4 seconds, shown in Fig. 2. The subject input an answer using a 
numeric keypad. The experiment was conducted with the lights off to enhance the effect of inducing drowsiness. 
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Fig. 2.  Experimental protocol 

 

3.  Definition of the drowsiness level 

We adopted the drowsiness level to objectively assess drowsiness. Thus, the facial skin temperature distribution 
was labeled by drowsiness level. The drowsiness level was assessed objectively every 20 seconds by the assessment 
criteria of New Energy and Industrial Technology Development (NEDO) in Japan [18], shown in Table 1, based on the 
facial expressions during “Drowsiness induction”. Three experimental collaborators (i.e., no subjects) made the 
assessment. 

 
Table. 1. Drowsiness rating criteria based on facial expression 

by the NEDO procedure[18] 

Drowsiness level State Example of facial expression and motions 

Level 1 Awake · Eye movements are quick and frequent 

· Blink cycles are stable at approximately two per two seconds 

· Body motions are active 

Level 2 Slightly drowsy · Lips are parted 

· Motions of eye movements are slow 

Level 3 Drowsy · Blinks are slow and frequent 

· Re-positions body on seat 

· Touches hand to face 

Level 4 Very drowsy · Blinks assumed to occur consciously 

· Shakes head 

· Frequently yawns 

Level 5 Extremely drowsy · Eyelids closing 

· Leans head back and forth 
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4. Analysis method 

4.1. Alpha wave 

The frequency component from 8 Hz to 13 Hz of the EEG is called an alpha wave, which is prominently 
expressed at rest, eye closure and arousal. The alpha wave decreases with eye opening and during sleep. EEG data 
time series are subjected to fast Fourier transform at 512 points per second to calculate the power spectra P(t, f), where t 
is time in the experiment. Alpha power spectra Pα(t) is an average value per second represented as 

 

𝑃𝛼(𝑡) =  
1

𝑁
∫ 𝑝(𝑡, 𝑓)𝑑𝑓 (𝑡 = 1, 2, …2075)

𝑓2
𝑓1

                                         (1) 

 
where f1 and f2 are 8 and 13, respectively, which are the limits of the alpha frequency band, and N is the 

number of samples in the band. The averaged alpha power spectra in each drowsiness level based on the objective 
drowsiness Pα,i are computed in the following equation: 

 

𝑃𝛼,𝑖 =
1

𝑁′
∑𝑃𝛼,𝑖 (𝑡)/𝑃

∗
𝛼    (i = 1,2, …4)                          (2) 

 

where N′ is the number of samples in each resting state segments and P∗ α is the average of Pα(t) at resting 

state segments. 
 

4.2 . Variational Autoencoder 

  Variational Autoencoder(VAE) is a generative model based on deep learning. Fig.3 shows overview of the 

VAE algorithm. X, 𝑋̃, NN represents input, output, and a neural network, respectively. The VAE network is divided into an 

encoder section and a decoder section. Given observation X = {𝑥1⃗⃗⃗⃗ , 𝑥2⃗⃗⃗⃗ , … , 𝑥𝑁⃗⃗ ⃗⃗  }, VAE identify probability distribution 

(p(𝑥∗⃗⃗  ⃗|X)) that produce unobserved value (𝑥∗⃗⃗  ⃗). VAE is designed on the assumption that latent variables that serve as 

explanatory variables are normally distributed. The Encoder performs dimensional compression of X, and it calculates the 

mean vector (µϕ⃗⃗ ⃗⃗  (𝑥)) and variance (∑ϕ(𝑥)), which are parameters of the normally distribution. The blue part in Fig.3 

indicates that sampling is performed from the standard normal distribution. The points are then sampled from the latent 
space distribution (𝑧 ). In the decoder, the model likelihood parameters (η𝜃⃗⃗⃗⃗ (𝑧)) is calculated, and the reconstruction error 
can be computed. Finally, the reconstruction error is backpropagated through the network. Since the reconstruction error 

to be optimized includes a regularization term that brings the mean (µϕ⃗⃗ ⃗⃗  (𝑥)) to 0 and the variance (∑ϕ(𝑥)) close to the unit 

matrix, the distribution of the latent variable 𝑧  has a shape close to a standard normal distribution. There is a tendency to 
regularize the organization of the latent space by bringing the distribution returned by the encoder closer to the standard 
normal distribution. For this reason, VAE can avoid overfitting and achieve a high recall compared to a normal 
autoencoder. 

 

 
Fig. 3. Overview of VAE 
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4.3.  Drowsiness detection using VAE 

 Variational We explain the concept of drowsiness detection in facial skin temperature using VAE. Fig.4 shows 
the conceptual diagram. In this study, we defined thermal face images in arousal state as Arousal, in drowsy state as 
Drowsy. Only Arousal is used for drowsiness detection using VAE. Firstly, by learning a large amount of Arousal, the 
drowsiness detection model was constructed. Secondly, testing data (Arousal and Drowsy) were input to the drowsiness 
detection model. If the pattern was similar to Arousal, the testing data was decided Arousal; otherwise the testing data 
was decided Drowsy. 

 

Fig. 3. Conceptual diagram of drowsiness detection using VAE 

Drowsiness detection using VAE requires a large amount of normal data. In this study, we verify whether the 
proposed algorithm is effective in drowsiness detection in facial skin temperature. Drowsy is thermal face images in 
which the skin temperature in drowsiness level 5 using the NEDO methods. Arousal were thermal face images obtained 
when the subject was in ‘’Drowsiness suppression’’ section. Image sizes are 640 × 480 pixels. The number of Arousal 
were 120. The thermal face image was normalized such that the maximum was 1 and the minimum was 0 because the 
difference in the temperature value in the skin area is small. In this study, 640 × 480 pixels of the thermal image were 
resized to 210 × 210 pixels and therefore, the facial skin area remained. When performing VAE learning, a part of the 
thermal image is randomly cut out at 8 × 8 size pixels, and this patch is used as learning data as shown Fig.4. The local 
thermal image of the skin area was expanded to 10,000 sheets.  

 

Fig. 4. Sample learning data 

Table. 2. Construction of encoder 
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Table. 3. Construction of decoder 

 

 

In this study, convolutional layers were placed before the FC layer of encoder in order to extract the features of 
the skin temperature pattern of the skin blood vessels. Along with that, deconvolutional layers were placed after the 
decoder. The construction of the encoder is depicted in Table 2. The structure of the VAE encoder consisted of two 
convolutional layers and one fully connected layer. In this table, Conv, BatchNorm, and FC indicate the convolutional, 
batch normalization, and fully connected layers, respectively. The mean vector and variance were output from FC. The 
structure of the decoder is paired with the structure of the encoder, and the structure is opposite to that of the encoder. 
The construction of the decoder is depicted in Table 3. ConvTrans indicates a transpose convolution. The gradient 
descent method was used for VAE parameter learning, and the optimization algorithm at that time was Adam. The 
number of dimensions of the latent variable was 6. The number of epochs was 20 and the batch size was 128. When 
testing, the spatial unregularized anomaly score was calculated with reference to [19] and used as an index for detecting 
anomaly data and detecting anomaly points inside thermal image. The equation for the spatial unregularized anomaly 
score is shown below. 

𝐿𝑉𝐴𝐸(𝑥) = ∑
1

2

𝑁𝑥
𝑖=1 ×

(𝜇𝑥𝑖
−𝑥𝑖)

2

𝜎2𝑥𝑖
                        (3) 

5. Result and discussion 

5.1. Alpha wave 

Fig. 5. shows the alpha attention coefficient (AAC) for each rest segment. Since AAC decreased from Rest1 to 
Rest2, a drowsiness inducing effect in Drowsiness induction section was confirmed. In contrast to the preceding argument, 
Since the AAC decreased in also Drowsiness suppression section, the effect of drowsiness suppression could not be 
confirmed. Improvement of experimental protocol is required in the future. 

 

Fig. 5. Alpha attention coefficient 
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5.2. Unregularized anomaly score 

Fig. 6. shows the Unregularized anomaly score for any sample. This score is a logarithmic scale. Blue areas 
indicate abnormal points. The bluer the color, the higher is the degree of feature. There is little difference in 
Unregularized abnormal scores between normal and abnormal images. This is probably caused by insufficient learning 
due to a lack of normal data. In the future, we will review the experimental protocol and increase the data of the arousal 
state. 

 

Fig. 6. Unregularized anomaly score 

6. Conclusion 

The objective of study is detecting drowsiness using facial skin temperature distribution to prevent traffic 
accident.  In order to extract the drowsiness-related features, we constructed the model that extracts the drowsiness-
related features and detects drowsiness by learning only the facial skin temperature during arousal using VAE. In this 
paper, the task of making the subject repeat drowsiness induction and suppression was examined by experiment. 
Further, using the data set obtained by the experiment, the feature extraction regarding drowsiness was performed using 
VAE. However, The drowsiness suppression effect was not confirmed in the drowsiness suppression section composed 
of amazing sound and arithmetic questions. Therefore, in the future, we will review the experimental protocol again and 
try to extract features related to drowsiness from facial skin temperature. 
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