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Abstract 

Studies that evaluate thermography as a method for breast cancer detection have relied on qualitative 
evaluation, without a well-defined evaluation technique. Some researchers have proposed systems through which 
interpreters can quantify their findings in thermographic images. The present work reviews and compares human 
evaluation methods from the literature in terms of their ability to predict cancer status. Also, additional features that can 
improve the performance of existing methods are identified and tested. 

1.    Introduction 

Currently, there is no standard methodology for the human interpretation of infrared images of the breast. In the 
Breast Cancer Detection Demonstration Projects (BCDDP), only 5 out of 27 centers had interpreters familiar with infrared 
thermography. Eighteen months into the project, training was provided, but only 11 centers sent their technicians to the 
training program. They did not use any scoring system that would allow quantifying results other than indicating whether 
the thermogram seemed "normal" or "abnormal" [5].  

Since then, several studies have proposed methods to evaluate thermograms; one of the most popular ones is 
the Marseille system, which defines 5 TH categories based on a variety of thermal findings [8]. Papers mention that this 
method is "specific, objective, and quantitative." This method requires the cold challenge —  a one-minute immersion of 
the hands into cold water before the examination.  

The Ville Marie study proposed a quantitative method that consisted of assigning a low numerical value to 
cases without vascular patterns and with existing but symmetrical patterns or only moderate asymmetry. In their scale, 
higher values are assigned depending on the number of "abnormal signs" identified, as shown in Table 2. Using this 
grading scale, the authors found a combined sensitivity of 95% of thermography and mammography, compared to a 
sensitivity of 85% for mammography alone in 100 cases of DCIS [5]. 

 
Table 2.​ Ville Marie Infrared (IR) Grading Scale  

 

Abnormal Signs 

1. Significant vascular asymmetry* 
2. Vascular anarchy consisting of unusual tortuous or serpiginous vessels that form clusters, loops, abnormal 

arborization, or aberrant patterns. 
3. A 1℃ focal increase in temperature (ΔT) when compared to the contralateral site when associated with the 

area of clinical abnormality. 
4. A 2℃ focal ΔT versus the contralateral site. 
5. A 3℃ focal ΔT versus the rest of the ipsilateral breast when not present on the contralateral site. 
6. Global breast ΔT of 1.5℃ versus the contralateral breast. 

Infrared Scale 

IR1 = Absence of any vascular pattern to mild vascular symmetry 
IR2 = Significant but symmetrical vascular pattern to moderate vascular asymmetry, particularly if similar to prior 
imaging 
IR3 = One abnormal sign 
IR4 = Two abnormal signs 
IR4 = Three abnormal signs 

*Unless stable or serial imaging or due to known noncancer causes (e.g., abscess or recent surgery) 
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Kontos et al. [6] developed another breast thermal imaging scale based on the color gradient between adjacent 
areas and differences between the two breasts. Images were ranked on a scale from T1 to T5, where T1-2 were 
indicative of healthy tissue or benign changes, T3 marked lesions with uncertain malignant potential, and T4-5 were 
cases suspicious or highly suspicious of malignancy. They further defined T1-2 as the absence of focal, non-linear 
differences in temperature with four or more colors difference from surrounding area and absence of diffuse lesions with 
six or more colors different from the contralateral breast. Despite being relatively better defined compared to the 
previously discussed methods, this approach still lacks a clear quantitative definition. 

González [2] introduces a thermal score to analyze thermographic findings quantitatively. This score is defined 
as the sum of the vascularity value and the temperature difference in degrees Celsius at the lesion site compared to the 
contralateral breast (delta-T). If no known lesion exists, then the highest temperature region in the breast is used when 
computing the difference in temperature. Gonzalez obtained a significant correlation between thermal score and tumor 
size [2]. 

 
Table 3. ​ Vascularity Grading Scale  

 

Score Explanation 

1 Absence of vascular patterns. 

2 Symmetrical or moderate vascular patterns. 

3 Significant vascular asymmetry. 

4 Extended vascular asymmetry in at least one-third of the breast area. 

 
Morales-Cervantes et al. [7] developed an automated method to compute the Gonzalez score [2] and evaluated 

it in 206 patients, 8 of them with breast cancer. The study found an area under the ROC curve of 0.83 using the thermal 
score for binary classification of patients. The model predicted all cancer cases to be positive. 

As far as the authors are aware, no comparison between quantitative methods to analyze thermal images of the 
breast has ever been made in the same set of patients. This work compares the methods presented in Gonzalez and 
Keyserlingk et al. [2,5] because they have a clear quantitative definition and do not require any additional procedures 
before the examination. We also introduce a new method that accounts for more thermal criteria than the methods 
mentioned above. 

Eventually, machine learning may provide a fully standardized method for the interpretation of breast 
thermograms. While a machine learning system could be prone to biases due to inappropriate selection of the training 
data, it would be free from human bias. Hence, at the very least, the predictions would be consistent as long as no 
changes are made to the model's architecture and its training data and procedure. 

Understanding the best strategy that a human can follow in interpreting breast thermograms may provide 
insights that aid the development of reliable machine learning models. These insights would not necessarily be limited to 
ideas of manual features for classical machine learning models. They could also inform viable data augmentation 
policies, model architecture decisions, or help evaluate whether a model is likely to generalize well based on the areas of 
the image that most influenced its decision. 

One of the most critical questions when evaluating a machine learning model for the interpretation of medical 
images is whether the method exceeds human performance. Answering that question in the case of thermal images in a 
standardized and replicable manner requires a definition of the appropriate procedure a human should follow in 
interpreting such images. This work aims at taking the first steps toward using quantitative methods to define such 
standards. 

2. ​ ​   Method 

Data comes from the Visual Lab Database for Mastologic Research and the nonprofit organization Eira in 
Mexico. It consists of 81 samples, 33 of which are confirmed cancer cases. The interpreters did not know anything about 
the origin of the thermograms.  

Images from both centers had the same aspect ratio but different sizes. Visual Lab images have a resolution of 
640 x 480 pixels, while Eira images come at 320 x 240 pixels. In order to prevent the interpreters from quickly discerning 
the two centers apart, Eira images were upscaled using the OpenCV's Lanczos interpolation. We removed patients with 
visible surgical procedures in their breasts, as interpreters would likely suspect abnormality in the surgically manipulated 
breast. 

The researchers evaluated the thermograms based on the criteria necessary to compute the Gonzalez and the 
Keyserlingk scores, as well as some other factors that we hypothesized could improve predictions: 
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1. Regions of interest: ​The number of separate vascularity regions that researchers considered necessary for the 
analysis. The most common value is 1, with 0 in cases where no asymmetries are present, and values higher 
than 1 if there are multiple areas of potential abnormality. 

2. Asymmetry size: ​Size of the asymmetric vascularity region on a scale from 1 to 10. If there is more than one 
asymmetrical vascular region, only the larger one is considered. 

3. Asymmetry shape: ​ How "abnormal" the asymmetry looks to the interpreter on a scale from 1 to 10. Only the 
"most abnormal" looking vascularity region is considered. 

4. Nipple asymmetry: ​ A binary value to indicate whether the thermal patterns around the nipples are 
asymmetrical. 

5. Breast shape asymmetry: ​A binary value to indicate whether the breasts significantly differ in shape. 
6. Delta-T: ​The temperature difference between the hottest point in the asymmetrical vascularity region and its 

corresponding location on the opposite breast. 
7. Vascularity: ​A vascularity score between 1 and 4. This value combines both asymmetry size and shape. This 

metric was added to replicate the Gonzalez method [2]. 
8. Subjective score: ​The interpreter's level of suspicion on a scale from 0 to 10, where 0 represents certainty that 

the patient is healthy, and 10 indicates certainty that the case is abnormal. The interpreter is asked to give this 
score based on their previous experience without using any metrics. 
 

3.​     ​Results 

Two independent researchers scored the images on the metrics presented above. The first researcher, R1, has 
many years of experience in interpreting medical thermography, while the second researcher, R2, has been freshly 
trained right before the study. After obtaining manual evaluations, we implemented two quantitative methods [2,5]. It is 
important to note that our data do not contain any images that satisfy the fifth criteria from the Keyserlingk score [5]. 
Thus, we omitted this criterion from the final score implementation without risking to lose information. We also 
constructed an alternative score based on the Gonzalez score. Instead of combining asymmetry shape and size into one 
vascularity feature, we took them separately since these metrics are more intuitive for humans than the combined score. 
The delta-T value was added to the combination of these features to get the final score. 

To evaluate how similar the evaluations of two researchers are, we calculated the Spearman correlation 
coefficient. One of the main advantages of the Spearman rank correlation coefficient is that the values can be ordinal, 
and it does not require approximate normal distributions for the variables.  
 

Table 4. ​ The table indicates the correlation of evaluations given by two researchers. Spearman coefficient is 
calculated for each metric on the left. MeanR1 and Mean2 are the mean values of the metrics given by each researcher. 

 

Feature Spearman Coefficient Mean R1 Mean R2 

# Regions of Interest 0.26 0.94 1.33 

Size of Asymmetry 0.26 2.60 5.02 

Vascularity  0.17 1.75 3.01 

Shape of Asymmetry 0.21 2.86 6.57 

Delta-T 0.67 1.30 1.34 

Nipple Asymmetry 0.13 0.48 0.79 

Breast Shape Asymmetry 0.18 1.86 5.44 

Subjective 0.34 3.85 7.33 

 
Spearman coefficients indicate a moderate-to-low positive correlation for different criteria. Temperature 

difference (delta-T) has the highest correlation score because this is one of the most straightforward metrics that 
researchers calculate. Other scores appear to be more interpreter-dependent and, therefore, have a lower correlation. 
The lowest correlated feature is the Nipple Asymmetry since the nipple is relatively small compared to the rest of the 
breast, which makes the evaluation harder. However, this metric is essential since an asymmetric nipple can be a sign of 
a rare form of breast cancer — Paget's disease. 

We implemented the scores using researchers’ evaluations, normalized the values to the range from 0 to 1, and 
calculated the Area Under a Curve (AUC) score for each of them. Figure 1 compares the performance of the quantitative 
scores [2,5] against the subjective score as well as the new score.  
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Figure 1. ​ The AUC scores for different thermal scores as given by the first researcher (left) and the second 

researcher (right).  

With the AUC score of 0.71 and 0.74, both researchers performed comparably well on the Gonzalez score [2]. 
The results obtained for the Keyserlingk score were significantly lower. A potential explanation is that while the 
Keyserlingk score is based on the quantity of the abnormal thermal signs, the Gonzales score also takes into account the 
magnitude of these abnormalities. Thus, the Gonzalez score provides a more precise understanding of the patient’s 
clinical picture, especially in extreme cases of a significant temperature difference in two breasts that cannot be captured 
by the Keyserlingk score.  

While a more experienced researcher performed exceptionally well on the new score, improving their result by a 
high margin, leading to the AUC score of 0.86, a less experienced interpreter got the lowest performance of 0.62. To 
investigate this difference, we carefully examined the evaluations of both researchers to understand their approaches 
better.  

By looking at the mean evaluations given by researchers (Table 4), we can see that the second researcher 
tends to give much higher values for features used in the score calculation. We explain it by a significant disparity in 
researchers’ experience. While a less experienced researcher had difficulty quantifying certain factors, such as shape 
and size of asymmetry, the other researcher based evaluations on their prior experience, which led to a more holistic and 
consistent evaluation. While less correlated features are preferable for machine learning models, we believe that the 
strategy taken by the first interpreter led to better results since breast cancer manifests itself through several signs that 
should be considered in combination.  For example, a short interview after researchers performed evaluations revealed 
that a more experienced researcher took delta-T into account when giving scores to the size and shape of asymmetry to 
get a better understanding of the scale of the change. As a result, the correlation of scores with the BI-RADS status was 
significantly better compared to that of their colleague. 

Additionally, we can see that both the size and shape of asymmetry features were highly correlated with 
BI-RADS for the first researcher but not for the second. The correlation of vascularity and delta-t to the BI-RADS score is 
comparable in both cases. It can explain the dramatic discrepancy in the results obtained using the new score compared 
to the Gonzalez score. 

 
Table 5. ​ Correlation of metrics to BI-RADS score for R1 and R2. 

 

Feature Spearman Coefficient for R1 Spearman Coefficient for R2 

Size of Asymmetry 0.50 0.01 

Vascularity 0.16 0.09 

Shape of Asymmetry 0.62 0.16 

Delta-T 0.41 0.49 

 
4.    Conclusion 

This study makes the first step towards specifying quantitative evaluation standards for infrared thermography. 
We analyzed two promising scores from the literature introduced in Gonzalez and Keyserlingk et al. [2,5]. The 
experimental study indicated that the Gonzalez score outperformed the Keyserlingk score as well as entirely subjective 
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interpretations given by researchers. We also introduced a new score by separating a single vascularity metric into the 
size and shape of asymmetry measures. This approach leads to a significant increase in performance but only for a 
researcher with many years of experience. These findings give us a reason to assume that the BCDDP study would 
probably obtain better results if performed today with experienced interpreters and quantitative methods since subjective 
scores are not the best and the level of researchers’ experience matters. A further study is needed to explore ways of 
making the new method less interpreter-dependent. For example, a study of the differences in approaches taken by 
researchers can be used to inform the training of new thermography evaluators.  
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