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Abstract 

In recent years, various methods for the generation of 3D thermograms have been developed. A well-stablished 
approach is the fusion of data from depth and long-wave infrared (LWIR) cameras. However, these models generated in 
real-time have the limitation that the model size is limited due to inefficient data storage. Newer algorithms from Computer 
Vision promise to overcome this limitation. Within this work, one of these 3D modelling algorithms is extended by the 
overlay of thermal data, which allows the creation of large-scale 3D thermograms. The results will show the advantages 
over current existing systems.  

1. Introduction 

3D thermal imaging allows simultaneous analysis of geometry and temperature data. This reduces projection 
errors and simplifies the interpretation compared to 2D thermograms. The user is supported, for example, in the 
measurement of objects with many undercuts, where a representation as an overall integrated result is received (instead 
of a report with many 2D images). With major advances in the data quality of low-cost 3D depth cameras and improvements 
of the modeling algorithms, linking thermographic data to these models is becoming increasingly popular. Most existing 
systems that create 3D thermograms from combinations of these sensor data in real-time are limited in the model size. 
Newer algorithmic approaches try to overcome this limitation (see chapter 2). With the developed 3D thermal imaging 
system (see chapter 3) three different algorithms are compared experimentally (see chapter 4) and afterwards the most 
appropriate 3D modelling method is extended by temperature superimposition to enable large-scale 3D thermograms (see 
chapter 5). The use of the system is demonstrated at example of an industrial molding machine (see chapter 6). 

2. Related Work 

In recent years, various systems have been developed for the creation of 3D thermograms. Especially due to the 
different methods of generating the 3D information, the properties and purposes of the systems differ considerably. Beside 
special applications, where e.g. CAD data is directly fused with thermal images [1] or the combination with color cameras 
[2], two 3D sensors have been found to be particularly suitable: 

Laser scanners (LIDAR) are mainly used for large 3D thermograms in outdoor applications [3, 4]. Due to the time-
of-flight working principle, the uncertainty of the measurement does not increase at long distances. However, the resulting 
models are very sparse because of the limited amount of combined point of view. Due to the duration of a 3D measurement 
and the usually static position of the measuring system, only low requirements on the model generation speed are 
necessary. 

For the second major class of 3D thermal imaging systems, depth cameras are used for geometry measurements 
[5–7]. These are low-cost sensors but can usually measure distances up to 3 meters with sufficient accuracy, as the 
measurement error increases quadratic with the depth. Since these systems are usually hand-held by the operator and 
moved around the object to be measured, modelling must take place in real-time to visualize the progress of the 
measurement. These calculations can currently only be performed on a graphics card and the memory of the graphics 
card is the bottleneck for the size of the measurement objects with the amount of data generated [5]. Commonly used 
voxel techniques, which divide a measurement volume into a large number of small volume elements, are often memory 
inefficient, as all volume elements are usually stored in the memory of a graphic card, although only a fraction of the 
elements contain information of surfaces. 

With KinectFusion the first real time geometric modelling system from depth sensor data was invented in 2011 
[8]. Based on this work, many algorithmic extensions have been developed in recent years. InfiniTAM [9] and Kintinuous 
[10] allocate only memory for voxels that are located close to a measured object surface. In addition, parts of the data are 
transferred from the memory of the graphics card into the RAM. In Kintinuous [10] the measurement volume is shifted 
based on the movement of the cameras and the model parts, which are no longer in the current measurement volume, are 
dynamically swapped. In contrast in InfiniTAM [9] the data is grouped into submaps, which are swapped between the 
memories. Another storage technique is the use surface elements (surfels) instead of volume elements, like in 
ElasticFusion [11]. These can be stored more easily without surrounding information, so that only surface data needs to 
be stored. In order to ensure sufficient accuracy for large point clouds, all algorithms also use Loop-Closure (LC) methods 
[9–11]. Since a small offset in the superposition of individual point clouds occurs at each time step, these errors sum up to 
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visible displacements in the model over the duration of the measurement. The LC recognizes object features (e.g. after a 
rotation around the object) and then tries to realign the shifted features. 

All three algorithms also use registration algorithms that include color information in addition to the geometry 
information. This means that features are recognized in the color image and their displacement between the consecutive 
camera poses is used to overlay the point clouds. This should enable the modelling of areas with few geometric but even 
color features (e.g. painted flat surfaces). 

3. 3D Thermal Measurement System 

In order to test the algorithms, a prototypical 3D thermal measurement system was built. For this purpose, a latest 
generation depth camera (Intel RealSense D415) is rigidly connected to a lightweight long-wave infrared camera (optris PI 
450) via a self-designed acrylic base plate. The technical data of the sensors used can be found in Table 1. The mounted 

3D thermal imaging system is shown in Fig. 1. A laptop with a high-end graphics card (GeForce GTX 980M, 4 GB VRAM) 
and Ubuntu 18.04 as operating system is used for the generation of the 3D thermograms. 

 
Table 1: Selected technical specifications of the used sensors. 

Item 
Intel RealSense D415 

optris PI 450 
RGB  Depth (VIS-NIR) 

Image resolution 1920 px × 1080 px 1280 px × 720 px 382 px × 288 px 
Field-of-View 69° × 42° 50° × 40° 53° × 38° 
Frame rate 60 Hz 80 Hz 
Spectral Range 0.4 µm to 0.65 µm 0.4 µm to 0.865 µm 7.5 µm to 13 µm  

Typical Uncertainty - Depth in 𝑧-axis: ≤ 2 % Temp.: ± 2 K or ± 2 %  

 

    
Fig. 1. Assembled 3D thermal imaging system, consisting of thermal imaging (top) and depth camera (bottom). 

4. Experimental Comparison of 3D Modelling Method 

The three algorithms [9–11] are compared for their suitability for the generation of 3D thermograms by means of 
experimental measurements and their quantitative and qualitative evaluation. Therefore, no integration of thermal data was 
needed. 

4.1. Evaluation criteria 

For the evaluation of the three algorithms two main criteria were used: 

• Most important is the accuracy of the generated 3D models as it determines the quality of the later 3D 
thermograms. The accuracy is determined by the quality of the registration procedures and the resolution 
of the models. In the case of particularly large target objects that are completely circled, the loop closure 
mentioned in chapter 2 has an additional influence. The accuracy is evaluated quantitatively by 
comparison with geometric reference measurements and qualitatively by the visual differences of the 3D 
models. 

• The second criterion is the speed of the calculation. This is important because the real-time feedback to 
the operator allows the operator to intervene on the measurement. Systems as in [5] for example can 
then indicate areas where a new data acquisition is necessary, e.g. by color-coding. Although the 
computing times differ considerably between different computers, it can be assumed that the trend of 
the comparison of the three algorithms is comparable when using a sufficiently fast graphics card. 
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Since all algorithms were selected on the basis that they promise to capture large 3D models and this has already 
been shown in the works [9–11], this will not be considered separately. 

4.2. Experiments 

The algorithms are evaluated by measuring three objects of different geometric properties. As scenes, an infrared 
calibrator, a laboratory furnace and an office scene (two desks with some objects on it) are considered. In the case of the 
laboratory furnace, the difficulty is due to the side wall of the furnace, as it contains very few geometrical and visual features. 
If the algorithms support the export of textured models, the fusion with the visual camera data is shown in the following.  

Multiple measurements were taken for each measurement object (three measurements for the IR-calibrator, three 
different movements around the laboratory furnace with two measurements each and two measurements around the office 
desk scene). The raw data of the sensors (depth and color image) were stored and the data was played back for each 
individual algorithm, in such a way that all images of a measurement are processed consecutively. This ensures that the 
results are comparable despite the system is hand-held.  

For the assessment of the modeling accuracy, some sample dimensions of the measurement objects are defined. 
For the calibrator, the diameter of the calibration surface determined from the point clouds is compared with the 
specification in the data sheet (measurement error 𝑒D1 in mm). For the laboratory furnace, the deformation of the model is 
primarily considered by determining the modeled angle of orthogonal edges to each other (𝑒W2 in °). In the office desk 
scene, five distances (all four desk edges and a distance between two objects on the desk measured with a laser 
rangefinder) are compared with data from the model (𝑒D3 in cm). 

4.3. Results 

The quantitative results of the accuracy measurement for all three scenes are shown in Table 2. There, both the 
mean value of the measurement error 𝜇 and the variance in the form of the empirical standard deviation 𝜎 are given. It is 
obvious that ElasticFusion provides for the highest accuracy in the experiments.  

 
Table 2: Quantitative Results of the experimental accuracies.  

Algorithm 

IR-Calibrator Laboratory Furnace Office Desk 

𝑒D1 𝑒W2 𝑒D3 
𝜇 in mm 𝜎 in mm 𝜇 in ° 𝜎 in ° 𝜇 in cm 𝜎 in cm 

Kintinuous 2.00 3.46 2.39 1.38 4.04 23.37 
ElasticFusion 0.67 0.58 1.52 0.93 1.53 16.01 

InfiniTAM 1.33 1.53 2.20 0.57 1.84 19.49 
 
This is additionally supported by the qualitative comparison of the results (see Figure 2). In InfiniTAM, a large 

amount of noise related defects is modelled, since all measured data is inserted into the model without outlier removal. In 
the case of Kintinuous, wrong registration occurs on the left side of the calibrator and the model is looking partly deformed. 
Due to the surfel approach, ElasticFusion gives no dense model, but the geometry and color of the calibrator is well 
reproduced. 

 

    
Fig. 2. Visual comparison of the modelling quality of the three investigated algorithms with the same input data. From left 

to right: InfiniTAM (no export of RGB textured models), Kintinuous, ElasticFusion and visual image. 

Figure 3 shows a representative curve of the registration time for one measurement of the office scene. It can be 
seen that InfiniTAM is the fastest algorithm. ElasticFusion and Kintinuous both have about the same ground speed, but 
with Kintinuous, there are significantly more outliers upwards. The few outliers of ElasticFusion are due to loop closures, 
which have been integrated into the model at those points in time. With InfiniTAM, a frame rate of 30 Hz can be achieved 
with the used computing system, with ElasticFusion a rate of 20 Hz can still be observed. 

Since ElasticFusion is by far the quantitatively and qualitatively most accurate algorithm and still provides time 
sufficient performance in terms of calculation speed, it is used as the basis for the 3D thermal measurement system. 
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Fig. 3. Comparison of the registration time needed to process one frame. The horizontal lines show the virtual limits for 

obtaining a frame rate of 20 respectively 30 Hz. 

5. Approach for Extended 3D Thermography 

ElasticFusion is extended by integrating the temperature data into the 3D model. Therefore, the data processing 
pipeline of the algorithm is augmented by the input of false color values (see section 5.2.1) of the temperature measurement 
(with the colormap and the temperature measuring range it is possible to recalculate the temperature values). At first, both 
cameras must be geometrically calibrated (intrinsically and extrinsically) so that the temperature values can be transformed 
into the coordinate system of the depth camera. 

5.1. Geometrical Calibration  

For the data fusion of cameras, they must be geometrically calibrated both intrinsically and extrinsically. In intrinsic 
calibration, the parameters for mapping object points [𝑋C 𝑌C 𝑍C] (in m) to the image plane [𝑢 𝑣] (in px) of a camera are 
determined: 

 

[
𝑢
𝑣
1
] =

1

𝑍c
[
𝑓u 0 𝑐u
0 𝑓v 𝑐v
0 0 1

]
⏟        

𝑲

[
𝑋c
𝑌c
𝑍c

] (1) 

 
With the camera matrix 𝑲, consisting of the focal length scaling factors 𝑓u and 𝑓v (in px) and the image centers 𝑐u 

and 𝑐v (in px). In addition to the parameters derived from the pinhole camera model, distortions caused by the optics must 
be corrected. For this purpose, the Brown distortion model from [12] is used, whose five parameters [𝑘1 𝑘2 𝑝1 𝑝2 𝑘3] are 
also estimated during the intrinsic calibration. 

Within the extrinsic calibration, the transformations (rotation matrix 𝑹 and translation vector 𝒕) between two 
camera coordinate systems 𝑐1 and 𝑐2 are examined:  

 

[
𝑋c2
𝑌c2
𝑍c2

] = [𝑹 𝒕] [

𝑋c1
𝑌c1
𝑍c1
1

] = [

𝑟11 𝑟12 𝑟13 𝑡1
𝑟21 𝑟22 𝑟23 𝑡2
𝑟31 𝑟32 𝑟33 𝑡3

] [

𝑋c1
𝑌c1
𝑍c1
1

] (2) 

 
In this case, these are the transformations between the coordinate systems of the depth and the thermal camera. 

As both are rigidly connected to each other as described in chapter 3, the calibration only needs to be carried out once 
after mounting the cameras onto the frame. 

A target is required for the calibration that has detectable features with a defined distance from each other. This 
target is placed in different poses (changed translation and rotation) in front of the multi-camera system in a manner that it 
is always in the field-of-view and depth-of-field of both cameras. Using image processing algorithms, these features are 
detected in the images and their positions are determined. By means of the optimization algorithm according to [13] the 
calibration parameters are optimized for the smallest deviations from the known feature distance of a virtual reprojection. 
For the extrinsic calibration, it is necessary that features are visible in the spectral range of both the long-wave infrared 
camera and the NIR cameras of the depth sensor. For an overview of the use of different targets for 3D thermal imaging 
systems, please refer to [14].  

Since the depth camera is already geometrically calibrated and rectified by the manufacturer, only the infrared 
camera is calibrated intrinsically and is then extrinsically calibrated with the left near infrared camera of the depth sensor 
(since the camera coordinate system of the depth image is placed there). 35 images of a backside heated, chessboard 
pattern calibration target were taken. The calculation of the calibration parameters is then carried out with the self-
developed (based on the Zhang algorithm as implemented in OpenCV) and freely available MRT Calibration Toolbox1. To 

 
1 https://github.com/MT-MRT/MRT-Camera-Calibration-Toolbox 
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optimize the parameters, 1000 calibration runs are performed with subsets of 10 images each. Then the five images with 
the highest reprojection error are removed (a high reprojection error usually indicates incorrectly detected features) and 
then the calibration is performed again. 

The results of the calibration are listed in Table 3. The translation between the cameras corresponds to the values 
resulting from the placement of the cameras on the acrylic frame. Since the remaining reprojection error should not be 
used as the sole quality measure for calibration, Figure 4 also shows a 3D thermogram of the IR calibrator. There it can 
be seen that the thermal layer fits exactly at the transition between the calibration surface (15,24 cm diameter) and the front 
side. 

 
Table 3: Results of the intrinsic calibration of the thermal camera (left) and the extrinsic calibration of the thermal and the 

depth camera (right). 

Thermal camera int.  Thermal – Depth ext. 

Parameter Value Parameter Value 

𝑓u in px 373.5 𝑟11 in - 0.99998 
𝑓v in px 373.3 𝑟12 in - -1.92 ∙ 10-3 
𝑐u in px 203.6 𝑟13 in - 5.99 ∙ 10-3 
𝑐v in px 151.4 𝑟21 in - 1.73 ∙ 10-3 

𝑘1 in - -4.712 ∙ 10-1 𝑟22 in - 0.9995 
𝑘2 in - 4.125 ∙ 10-1 𝑟23 in - 3.19 ∙ 10-2 
𝑝1 in - -1.110 ∙ 10-3 𝑟31 in - 6.05 ∙ 10-3 
𝑝2 in - 4.692 ∙ 10-4 𝑟32 in - -3.19 ∙ 10-2 
𝑘3 in - -1.265 ∙ 10-1 𝑟33 in - 0.9995 

𝑅𝑀𝑆𝐸 in px 0.558 𝑡x in mm -34.64 

 

𝑡y in mm -34.42 

𝑡z in mm -0.263 

𝑅𝑀𝑆𝐸 in px 0.418 
 

      
Fig. 4. Front view (left) and detailed top view (right) of the thermal layer positioning at a 3D thermogram of an IR-

calibrator (Fluke 4180). 
 

5.2. Algorithmic Extension 

To enable the integration of thermographic data into ElasticFusion, the data structure and program must be 
extended appropriately. The complete flow of the thermographic data thread running parallel to ElasticFusion is shown in 
Figure 5 left. After the initialization of the program, the calibration data of the infrared camera is loaded. Afterwards the 
radiometric object and environment properties (𝑇amb, 𝜀, 𝜏) required for the temperature calculation are loaded. The 
rectification of the camera data is done with a rectification map (see section 5.2.2). After initialization of the camera, the 
thermal images are received and checked for a non-uniformity correction (NUC) (see section 5.2.3). After the rectification, 
the data is pushed into a buffer, which ElasticFusion is allowed to access. In ElasticFusion the most recent image of the 
buffer is loaded, the measured temperature values are assigned to the individual surfels according to the geometric 
calibration from section 5.1 and integrated into the data structure (see section 5.2.1). Since there is a maximum time offset 
of approx. 8.3 ms due to the high frame rates of the cameras, no temporal calibration was applied (both cameras have no 
trigger). 

5.2.1. Data structure 

After assigning a temperature value to a surfel, it must be stored within the surfel. The data structure given by 
ElasticFusion offers 4 bytes of free memory, which is used for the temperature data (see Figure 5 right). However, to enable 
real-time false-color display, the temperature values must be saved as false colors, since it is not possible to convert all 
points, which are visible in the viewer, in a single time step. Since the temperature values are only saved as false colors, 
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a color palette with many single color steps should be chosen. The manufacturer's radiometric camera calibration was 
used to calculate the temperature values. The remaining 8 bit of free memory could be used to save the measuring 
conditions in the future to enable data selection criteria like in [5]. 

 

    
Fig. 5. Flowchart of the thermal image data processing (left) and the new data structure of a surfel (right). 

5.2.2. Distortion Calculation 

The distortion calculation is not solved for each frame according to Brown's model equations, as this would be 
too computationally demanding for real-time operation. Instead, the equation is solved once at the beginning for the 
calibration parameters and the assignment rule is stored in the rectification map. With this look-up table the individual 
pixels of the incoming thermal images are now assigned to their location in the rectified image. By outsourcing this 
assignment task to the graphics card of the system additional computing time can be saved. In a test, this improvement 
resulted in savings of 32.7% computing time compared to an execution on the main processor. 

5.2.3. Integration of a NUC 

Since previous systems like in [5] could only measure a maximum object size of approx. 1 m³ (depending on the 
voxel-size and the graphics memory), the duration of a measurement was usually not more than 20 to 30 seconds. As the 
object size is now significantly increased, the measurement duration increases accordingly. With previous systems, a NUC 
was carried out before starting the measurement and the Auto-NUC was switched off during the measurement and 
modelling process. Due to the use of an uncooled microbolometer camera this will now lead to large errors, especially in 
scenes with strongly varying temperature radiation. Now the Auto-NUC of the camera can be switched on via input 
parameters and the frequency can be adapted to the requirements of the scene (signal is sent via the manufacturer's 
driver). A test has been integrated into the evaluation loop, which checks if a NUC is currently performed and then sends 
a pause signal to the ElasticFusion modeling process. During the NUC the camera retransmits the last image taken before 
the NUC with its frame rate, so that the integrated test is based on the calculation of differential images. 

 

6. Industrial Test Object 

As a demonstration object, a thermoplastic injection molding machine was examined with the new 3D thermal 
imaging system. The resulting 3D color model and the 3D thermal image are shown in Fig. 7. The measured object surface 
is 46 m². Almost a third of the graphics card's memory was filled with surfel information, so that a total area of about 140 
m³ can now be recorded in one measurement. With a system according to [5], the recording of approximately 100 single 
3D thermograms and a time-consuming semi-manual merging post-process would have been necessary to build a 
comparable result. The recording duration was 14 minutes, such that the set Auto-NUC (every 15 seconds) enabled a 
temperature drift-free recording. The exported point cloud, which contains both thermal and visual information, has a size 
of 213 MB. 

The thermal characteristic of the casting mold is clearly visible, as it was heated to 200 °C. In this case, a 
logarithmic temperature scale was chosen to also show the changes in the lower temperature range. Since no analysis of 
the emissivity was carried out, the measured temperatures are Blackbody temperatures (emissivity was set to 1). 

Problems were caused mainly by three various reasons during the measurement. Areas with visual and near-
infrared semi-transparent materials, such as the glass pane of the door, are poorly modelled, as the depth camera and the 
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visual camera can only measure inaccurately there. The registration of the point clouds with the overall model is 
problematic in those areas, where only few geometric or visual features are available to calculate the poses. The absence 
of the features leads to the fact that the optimization of the cost functions no longer leads to a unique solution at registration. 
This can be seen, for example, in the control cabinet at the bottom of the front. Additionally, during the execution of the 
NUC the geometrical modelling is stopped. The registration of the point clouds becomes more difficult if the operator makes 
a large movement with the 3D thermography system during NUC, since the underlying iterative closest point (ICP) 
algorithm is only working for small displacements. In the worst case, this can lead to incorrect registration and thus to the 
termination of the measurement. Therefore, for correct measurement, the user should not move the system too fast during 
the NUC (which is audible). 

 

 

 
Fig. 6. Visual 3D model (top) and 3D thermogram (bottom) of a thermoplastic injection molding machine with heated 

mold cavity. In the color model areas of poor modeling quality are shown: a) Semi-transparent materials, b) Parts with 
few features, c) Small parts that are difficult to resolve, such as cables. 

7. Conclusion 

As shown in the previous case study, objects with a significantly larger measurement volume (more than two 
orders of magnitudes) than before can now be thermally measured in three dimensions with a single measurement run 
using a combination of depth and infrared cameras. This leads to a drastic time saving, which makes potential service and 
maintenance tasks with such a system economically viable. By testing and selecting a suitable algorithm, geometrically 
accurate models will be generated. The case study reveals minor methodological constraints (semi-transparent materials, 
presence of features) that must be considered during the measurement. 

8. Summary and Outlook 

This work shows the generation of large-scale 3D thermograms by the fusion of depth and infrared camera data. 
The approach is based on ElasticFusion [11], which performs the task of 3D modelling from the depth camera data and 
outperforms two other investigated methods [9, 10]. It is demonstrated that large objects can be measured with a high 
resolution in real-time. In the future, methods for the evaluation of the temperature data measuring conditions from [5] will 
be used to extend the presented system in order to integrate only appropriate data into the model. Furthermore, work is 
currently in progress to automatically determine the heat loss from object surface areas and temperatures. For this purpose, 
it must be possible to select individual model parts and specify their emissivity. The integration of data from an inertial 
measurement unit could additionally improve the data availability during the execution of a NUC. 

a) 

b) 

c) 
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