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Abstract  

Thermal diffusivity can be measured by analysing the pulse response of the rear-face or of the front-face using 
a single detector or an IR camera. For the front-face configuration a simple identification method is proposed in the case 
of significant heat losses. The method is based on original correlations established between the occurrence times and 
values of the first and second logarithmic derivatives obtained by the thermographic signal reconstruction (TSR) method. 
The intrinsic accuracy of the identified diffusivity is evaluated by numerical simulations and validated by the analysis of 
experimental thermograms. Guidelines are proposed to optimise the identification procedure. 

1. Introduction 

Pulsed photothermal radiometry and stimulated IR thermography, studied since several decades are mainly 
developed for NDE and thermophysical characterisation purposes. For them, several data processing methods exists 
since a long time or are still in development. Most of the developments, and the present work in particular, are focused 
on the single-sided (or front-face) technique in which stimulation and thermal monitoring are on the same side of the 
studied object. Contrarily to what has been done for the rear-face technique [1-5], up to now, for the front-face technique, 
attention has been rarely paid to the heat losses which take place during the cooling phase following the stimulation [6-
8]. This is not a problem when the conditions (pressure and temperature) are near of the ambient, the structures are 
made of good heat conductors and their thickness small or moderate. Nevertheless, these phenomena limit the field of 
application of the technique, in particular when dealing with the metrology of the diffusivity. In this context, the present 
work aims to take into account the heat losses phenomena in the identification procedure of this parameter, in a way 
similar to what has been done by many researchers in the past for the rear-face technique. The chosen approach 
consists to select a few critical points of the thermogram (temperature increase time history) to achieve the diffusivity or 
thickness identification. Such simple approach, not so sophisticated as inverse methods, remains interesting thanks to its 
rapidity and simplicity. 

After a recall of pulse stimulated radiometric techniques and of the heat losses influence, the principle of the 
present approach, derived from the thermographic signal reconstruction (TSR) method is described, showing how to 
identify in presence of heat losses the diffusivity from the values and the occurrence times of the maximums of the first 
and second logarithmic derivatives of the thermogram fitted by the TSR method. The intrinsic accuracy is evaluated and 
finally the validation is obtained by applying the method to the characterisation of a coupon of carbon-epoxy composite. 

2. How heat losses disturb the pulsed thermograms 

Figure 1 presents the normalised adiabatic thermograms of the two faces of a plate submitted to a pulse 
heating. They are obtained by dividing the temperatures by the final asymptotic value. The normalised time is the Fourier 
number: Fo=κt/L2, where t is the time, L the thickness of the coupon and κ its diffusivity. The thermograms are presented 
for two values (0 and 1) of the normalised heat transfer coefficient at the wall, the Biot number: Bi=hL/k, with h the linear 
heat transfer coefficient supposed identical for both faces and k the thermal conductivity). These results are for 1-D 
configuration.    

The front-face normalised thermogram renders a cooling of decreasing intensity. Without heat losses it presents 
three successive regimes easily distinguishable in the log-log representation: i) a regime of semi-infinite medium produc-
ing a straight line with a -1/2 slope, the position of which is depending on the sole effusivity of the material, ii) a transition 
zone mainly influenced by the diffusivity of the material and the thickness of the coupon (which is generally supposed 
known), iii) a final plateau is the sample is adiabatic and which depends on the volume heat capacity. If heat losses oc-
cur the thermogram changes : the first zone remains straight but the slope slightly decreases, the second one presents a 
negative curvature instead of a positive one, and the third one disappear. For the rear-face the asymptotic plateau is 
replaced by a maximum.  

Without heat losses, the basic and simpler way to identify the diffusivity consists for the front-face configuration 
to measure the time of occurrence of the intersection of the two asymptotes which correspond to the Fourier value of 1/π 
= 0.3183, and for the rear-face to measure the half rise time which corresponds to a value of 0.139 of the Fourier. Heat 
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losses make disappear these two characteristic points and require to search for new ones, the positions of which will 
depend on the Biot number. This approach has been done since a long time for the rear-face technique [1-5]. It is the 
aim of the present study to make the same for the front-face technique. 

 

 
Fig. 1. Normalized pulsed thermograms of front- and rear-faces of a plate, with the characteristic points used for diffusivity 

identification in adiabatic conditions. 
 

3. In search of characteristic points for front-face thermograms 

To define new characteristic points where to proceed to the diffusivity identification, we can use the possibilities 
offered by the TSR method proposed at the beginning of the century by Shepard [9], in particular to consider the 
maximums of the first two logarithmic derivatives of the thermogram. 

Let us recall that the TSR method consists to fit the pulse thermogram by logarithmic polynomials : 

 (1) 

and to obtain the logarithmic derivatives by derivations of the polynomial, which avoids to increase too much the noise. Until 
now the method is mainly used in a rather qualitative way for non destructive application, in particular because the images 
of the derivatives have a better quality than that of the temperature rises. Nevertheless, the TSR method can be used 
quantitatively for the identification of the diffusivity or the thickness of a structure, provided that one of the two be known [9]. 

The Figure 2 shows how the diffusivity can be identified from the following characteristic points, with and without 
heat losses. In the adiabatic case, the three remarkable points are the intersection of the asymptotes of the thermogram, 
the half-rise of the first derivative (value of 0.25) and the top of the second derivative. The Fourier number of these three  

  

Fig. 2. Points usable to identify the diffusivity from the front-face pulsed heating measurement. Case of an adiabatic plate (Bi=0) 
taken from [10] and of one with heat losses (Bi=0.3). 

Log10(ΔT ) = a0 +a1Log10(t)+a2 [Log10(t)]
2…+an [Log10(t)]

n
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points is the same. In the non-adiabatic case, the direct exploitation of the thermogram is not possible, the half-rise of the 
first derivative becomes difficult to define and for high losses disappears, and the top of the second derivative still exists 
but has a lower value and occurs earlier. A second characteristic point can be the top of the first derivative. The value 
and time of occurrence of the first derivative, D1, respectively D1max and FoD1max, and the ones of the second derivative, 
D2, respectively D2max, and FoD2max can be considered for the identification.  

Figure 3 shows the strong influence of the heat losses on the thermogram and its derivatives and the sensitivity of 
the parameters D1max, D2max, FoD1max, FoD2max to the Biot number. This sensitivity appears more clearly in Figure 3d, 
showing strong differences between each other. For both derivatives, the values of the maximums, D1max, D2max, are clearly 
more sensitive to the heat losses than the time of occurrence, FoD1max, FoD1max. The use of the peak of the 2nd derivative a 
priori seems interesting since it occurs earlier than the one of the 1st derivative, which leads to a better signal-to-noise ratio 
when considering real data. Conversely, the sensitivity to the Biot number of the time of occurrence of this derivative, 
FoD2max, appears very low as compared to the one of the other three parameters (see Figure 3d).  

 
 

Fig. 3. Influence of heat losses (Biot number) on the front-face thermograms (a), the first logarithmic derivatives (b), the 
second one (c), and sensitivity to Biot number curves of the 4 parameters D1max, D2max, FoD1max, FoD2max (d). 

 

4. Identification of the diffusivity from the maximums of the first two derivatives 

4.1.  Description of the method 

4.1.1. Using the first derivative 

The proposed identification method includes several steps: 
• Thermogram fitting of thermogram Log10(∆T)=f(Log10(t)) by a polynomial (TSR method); 
• Derivatives of the polynomial (TSR method);  
• Localisation of the maximum of the first  derivative and evaluation of its value D1max and time of occurrence, tD1max; 
• Calculation of the theoretical Fourier number of the maximum of the derivative, FoD1max, thanks to a correlation 

established from the simulation results (Figure 4a) between the experimental value of D1max and this Fourier number: 

 (2) 
    

€ 

FoD1max = −0.0798 Log10 −D1max( )[ ] 3
− 0.3047 Log10 −D1max( )[ ] 2

− 0.6999 Log10 −D1max( ) + 0.2095
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Fig 4. Relation between FoD1max and D1max (a); ditto for FoD2max and D2max (b). 

• The experimental value of tD1max is put in the expression of FoD1max leading to the value of the κ/L2 ratio: 

   (3) 

• Supposing known one of the two parameters κ  and L, the second one is easily deduced:  

     or   (4) 

4.1.2. Using the second derivative 

The same procedure can be used with the second derivative, using a relation between the Fourier of occurrence, 
, and the value of its maximum, D2max (see Figure 4b): 

   (5) 

4.2.  Intrinsic accuracy of the method 

4.2.1. Bias introduced by the TSR method and the use of Eqs. (2) and (5) 

The correlations (2) and (5) are established from thermograms calculated by a numerical finite difference method 
(Euler) validated by comparison to a semi analytical solution (Laplace transform). The discrepancies between the two 
approaches is always <0.1%. These thermograms simulate experiments without noise. Practically, experimental 
thermograms suffer from noise which is eliminated by the TSR method which fit them by a series of logarithmic 
polynomials. This operation introduces a bias to the identified diffusivity. So, the application of the method to the 
theoretical thermograms allows to estimate the intrinsic accuracy of the identification. Reference [10] demonstrated that 
without losses, the identification of diffusivity from a characteristic point of the logarithmic derivatives needs a judicious 
choice of the polynomial degree and of the temporal window on which operate the fitting. In the present case, due to the 
important changes in the shape of the thermograms and their derivatives, it is possible that the use of the Eqs. (2) and 
(5) and the choice of the aforementioned parameters lead to different results, which justifies to know the intrinsic 
accuracy for optimizing the procedure. For each case, corresponding to a given value of the Biot number, a given degree 
of the fitting polynomial, n, and a given temporal window, we have calculated the fitted thermogram and its derivatives and 
applied the identification procedure allowing to estimate the diffusivity from the knowledge of the value and the 
occurrence time of the derivative peaks. 

4.2.2. Influence of the choice of the time window 

Three windows have been tested: large, Fo ∈ [0.01-1.5], medium, Fo ∈ [0.04-1.5], and narrow, Fo ∈ [0.1-1.3]. As 
seen in Table 1, which presents the accuracy on the identified Fourier number of occurrence of the first derivative peak, 
FoD1max, the optimal choice for the temporal window, whatever be the degree of the fitting polynomial, appears similar to 
the one of the study presented in [10], that is the best choice corresponds to the narrow window, and the less relevant to  

    

€ 

κ / L2 =FoD1max
/ t

D1max

    

€ 

κ = L2 FoD1max
/ t

D1max
L = κ tD1max

/ FoD1max

FoD2max

    

€ 

FoD2max
= −0.0021(D2max )2 + 0.1049D2max + 0.2063
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Table 1. Combined influences for Bi=0.1 of the choices of the time window and of the degree of the polynomials on the 
accuracy of the identified occurrence Fourier of the peak of the 1st logarithmic derivative, FoD1max. 

 

the larger window. This trend, obtained for Bi = 0.1, is verified for other values of Bi. Consequently, it has been decided 
to consider just this narrow window for the rest of the theoretical study. 

4.2.3. Influence of the choice of the degree of the logarithmic polynomials 

The influence on the derivatives of the degree of the polynomials (5 ≤  n ≤ 9) has been studied for the narrow 
window and Biot numbers between 0.01 to 1. The results are presented in Figure 5. The influence of the degree of the 
polynomials is essentially marked at the borders of the window. In the vicinity of the derivative peaks all the curves of the 
1st derivative are merged. On the contrary, for the 2nd derivative, noticeable differences are noted. The relative errors on the 
diffusivity identified from the position (Fourier of occurrence and value) of the peaks of the derivatives are given in Table 
2. In case of thickness measurement (diffusivity supposed known) these errors should be two times less (see relations (4)). 

(a)  (b)  

Fig. 5.  Restitution of first (a) and second (b) derivatives of the thermograms by derivation of the logarithmic polynomials. 
Influence the degree of the polynomials. Results obtained for the narrow time window Fo ∈ [0.1-1.3]. 

Table 2. Intrinsic accuracy of the diffusivity (a) identified from the peak of the 1st derivative, D1max , (b) from the peak of 
the 2nd derivative, D2max. Results for the narrow time window, Fo ∈ [0.1-1.3]. 
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The main conclusions deduced from Table 2 are the followings: i) Higher the degree n, better the accuracy of the 
identified diffusivity, ii) The use of the degree 9 is recommended since accuracies better than 1% are obtained for the 
explored Biot domain, iii) The use of polynomials of degree smaller or equal to 6 are to be avoided, iv) For low Biot 
numbers (Bi ≤ 0.05) and n ≥ 6 the use of the second derivative has to preferred, v) on the contrary for large and medium 
Biot numbers (Bi ≥ 0.05) the use of the first derivative is recommended. 

The high intrinsic accuracy obtained with n = 9 is comparable to that of rear-face pulsed techniques for diffusivity 
measurements, for which an effective accuracy of 3% is difficult to reach. In practice, to the intrinsic errors, errors due to 
the noise and low frequency drifts of the camera must be added. The latest become more important with the derivations 
of the thermograms. All these conclusions have to be faced to the results of real experiments.  

5. Experimental validation 

The simulations of the previous Section show that the domain of application of the method corresponds to Biot 
numbers between a few hundredths and unity. So, it is possible to define the materials and thicknesses for which the 
method will be useful. Figure 6 presents the domain in the space (thickness - thermal conductivity) and mentions the 
corresponding types of materials, from super-insulators to metals, and thicknesses. The highly shaded domain is the one 
for which the method is not adapted, and the lightly shaded the one for which the method leads to accurate measurements in 
normal ambient conditions. The present approach expands the domain of application by a factor of 100 as concerns the 
thickness of the tested structures and for a given thickness allows to make measurement on materials 100 times less conductors. 

The method has been validated experimentally by measuring the diffusivity of a 5.24 mm-thick plate made of 
carbon-epoxy used in previous NDE studies [13-15]. Both rear- and front-face measurements are made with the same IR 
camera (FLIR X6540sc), working in short waves [1.5 – 5] µm. NETD is 20 mK and space resolution 640×512 pixels. Two 
flash lamps Elinchrom deliver a total pulse energy of 6 kJ during 4 ms. The frame rate is 100 Hz. The thermograms are 
obtained by calculating the mean of 30x30 pixel zones. 

Supposing a thermal conductivity of the plate of 0.6 Wm-1K-1, a usual value for this type of material, the 
experimental conditions are plotted on the graph of Figure 6. They shows that the tests is in the central part of the 
application domain of the method and correspond to a Biot near of 0.1. This is verified by the thermograms presented in 
Figure 7b, which does not present any final plateau.  

 
 

Figure 6. Domain of application of the method in normal ambient temperature and pressure conditions (h = 10 Wm-2K-1). 
The experimental conditions of the tests presented in Section 5.2 are presented as well. 

5.1. Rear-face diffusivity measurement 

To validate the present method we chose the rear-face flash diffusivity method taken into account the heat losses. 
Among the various data processing methods we chose for its simplicity and accuracy the partial times method proposed 
by Degiovanni in Reference [5]. It considers five characteristics points of the thermogram corresponding to the 
normalized temperature rises ∆T/∆Tmax=1/3,1/2, 2/3, 5/6 and 1. The following three identification formulas: 
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(a)         (b)  

Fig. 7. Validation of the method by comparison to a rear-face measurement. (a) Experimental rear-face thermogram and 
diffusivity evaluation by the partial times method; (b) Front-face thermograms (normalized temperature rise). 

 (6) 

use the times of occurrence  t1/3, t1/2, t2/3 , t5/6 (see Figure 7a). The three estimates of the diffusivity are very similar, 
leading to a mean value of 4.17 10-7 m2s-1 (σ = 0.02 10-7 m2s-1). As a reference for the material diffusivity, we will chose 
the ealier identified value, 4.19 10-7 m2s-1, rounded up to the value of 4.2, 10-7 m2s-1. 

5.2. Front-face diffusivity measurement 

Several tests were done on the plate in a sound zone, with a duration of 600 s each, comprising a 300 s- 
preliminary plateau to define the baseline, followed by a 300 s- acquisition of the temperature rise created by the pulse 
heating. The initial plateau allowed to measure a mean drift of 0.20 mK.s-1 and to correct the thermogram. Three tests 
took place the same day: one in the morning (test #1), a second one at noon (test #2) and the last one (test #3) in the 
afternoon. All thermograms have been normalized by the temperature rise at t = 1 s (Figure 7b). The heat losses effects 
are important and totally suppress the final plateau. The signal-to-noise ratio, especially at the end of the tests, is clearly 
lower than that of the rear-face thermogram. The noise itself, estimated from the initial plateau is equal to 19 mK, which 
is in agreement with the nominal performances of the camera. 

The thermogram shown in Figure 8 is the initial stage of test #1 after subtraction of the mean value and correction 
of the mean drift. It demonstrates that beside a high frequency noise, low frequency fluctuations of the order of tens of 
millihertz exist. Such fluctuations are able to deeply disturb the derivatives of the thermogram, leading to degrade the 
accuracy of the diffusivity identification. 

 
Fig. 8. Test #1,  initial plateau before flash, after linear drift correction, showing low frequency fluctuations. 

    

€ 

κ1/ 3 = 0.818−1.708 t1/ 3 t5 / 6( ) + 0.885 t1/ 3 t5 / 6( )2⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
L2 / t5 / 6

κ 1/ 2 = 0.954−1.581 t1/ 2 t5 / 6( ) + 0.558 t1/ 2 t5 / 6( )2⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
L2 / t5 / 6

κ 2 / 3= 1.131−1.222 t2 / 3 t5 / 6( )[ ] L2 / t5 / 6
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Fig. 9. Combined influence of the time-window ([1s-300s] and [5s-200s]) and of the polynomial degree (n = 5 to 9) on: 

(a,d) the fitted thermograms Log10(∆T) = f(Log10(t), (b,e) their first derivatives (D1), (c,f) their second derivative (D2). The 
thermogram is normalized by its value at time t = 1 s. Test #1. 

Figure 9 presents the combined influence of the time window and polynomial degree on the reconstruction of the 
experimental thermogram (Test #1) and of its first two logarithmic derivatives. Both parameters have a noticeable 
influence on the amplitude and time of occurrence of the the peaks of the derivatives, and consequently on the accuracy 
of the identified diffusivity.  

Table 3 presents the relative errors on the diffusivities deduced from the three tests. These errors have been 
calculated supposing exact the value found from the rear-face test (κ = 4.2 10-7 m2s-1). The influence of the following 
three parameters are detailed: i) degree of the polynomials used by the TSR method (5 ≤ n ≤  9), ii) the time window 
considered for the polynomial fitting (a narrow window, [5 - 200] s, and wider window, [1 - 300] s, iii) the choice of the 
peak derivatives (D1max and D2 max). 

Table 3 shows that: i) the errors are more important than the intrinsic errors (Table 2), which was foreseen since 
there are noise and fluctuations in the experiments, not considered in the simulations; ii) the three tests present 
noticeable disparities; iii) the use of the 1st derivative generally leads to poorer results than the ones of the 2nd derivative; 
iv) the variations of the accuracy induced by changing the polynomial degree, although a little chaotic, present an 
improvement when passing from 5 to 9; v) the improvement of the accuracy verified with the simulations when passing 
from a large window to a narrow one is not systematic. 

The right part of Table 3 presents the mean values and the standard deviations of the identified diffusivities 
considering the three tests. Some very important errors make the reader perplexed regarding the strategy to follow to 
guaranty an accurate measurement. The solution could be the following: lest us come back to simple principles of 
thermophysics: 
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Table 3 . Comparative study of the influence of the degree of the polynomial, the temporal window considered for the 
regression and the derivative (D1 or D2) on the accuracy of the diffusivity identified from the three tests. 

 
- Favour given to earlier identification, so preference given to the use of D2max instead of  D1max (see [16], pp. 23-24); 
- Choice of a narrow time window for the polynomial fitting, with a size of the order of one decade and a very small part 

given to the semi infinite medium regime (straight line part in log-log representation); 
- No use of low degree for the polynomials (n = 5 et 6 not considered); 
- Realization of several tests and consideration of the mean value resulting from them. 

Applying these rules leads to just consider in Table 3 the three values written in bold type and more particularly 
their mean value over the full trio: κ = (4.05 ± 0.01) 10-7 m2 s-1. This value is very near from that found from the rear-face 
technique, κ = (4.17 ± 0.02)·10-7 m2 s-1, which confirms the pertinence and efficiency of the criteria proposed. 
Nevertheless, these numbers must be considered with caution, since even for the very secure rear-face flash method of 
Parker, round-robin tests conducted with well-established laboratories (see for instance [17]), on reference homogenous 
materials, it was concluded that accuracies better than 3% were difficult to reach. 

6. Conclusions 

The present study demonstrates the possibility for front-face pulsed-stimulated thermography to measure the 
diffusivity of a structure even in presence of noticeable heat losses impeding to use classical data processing. The 
method is based on the TSR method and achieves the identification from the measured characteristics (amplitude and 
time of occurrence) of the peak of the first or second logarithmic derivatives. The method is based on two original 
correlations relating the normalized time of occurrence and the amplitude of the peaks - equations (2) and (5) -. 

Numerical simulations have established that the intrinsic accuracy of the method is governed by three 
parameters: degree of the TSR polynomials, extension of the time window considered for the polynomial fitting of the 
thermogram, and choice of the derivative (1st or 2nd derivatives). The intrinsic accuracy is found excellent (less 1% error 
on the diffusivity) for a judicious choice of this parameters.  

An experimental validation in presence of real noise and fluctuations of the IR camera signal has been done by 
application to a carbon-epoxy plate of 5.25 mm thickness. From the time evolution of the temperature rise during the 300 s 
following the pulse, diffusivity estimation have been obtained. Depending on the values of the aforementioned 
parameters the results present chaotic errors, generally much more important than the intrinsic errors. Nevertheless, 
applying a few rules based on some simple principles of thermophysics, it is possible to find results in good agreement 
with diffusivity measurements by a classical rear-face pulse heating technique. 

 An important lesson learned from the study could be the following: to use the logarithmic derivatives of a pulsed 
thermogram (TSR method) with metrological ambitions is difficult. This lack of realism leads sometimes people to 
propose to exploit even the second peak of the derivatives, a situation even more difficult when dealing with experimental 
data. In fact, this is probably due to the fact that most of the applications of TSR are in the field of END for which a very 
high accuracy is not necessary. 

Let us mention that the experimental case here presented is difficult considering the large duration of the test. Other 
conditions, needing shorter experiments to produce heat losses effects may be encountered. They should lead to an easier 
application of the method. Finally, to correct efficiently the thermogram for such very long test durations, a solution could be 
to acquire in real time the fluctuations of the camera signal in a zone of the images where no stimulation occurred.  
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