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ABSTRACT 

The application of hyperspectral infrared imagery has considerably increased in the different fields of research. Hyperspectral 

image analysis is mainly used in remote sensing for various applications such as target detection, vegetation detection, urban 

area categorization, astronomy and geology. The mineralogical applications of this technology involves mineral identification in 

remote sensing, airborne imagery, portable instruments, and core logging. Recently, hyperspectral imagery has been used in 

laboratory conditions for mineral grains identification.  

We address a complete assessment (quantitative and qualitative) of mineral identification in the laboratory conditions and try to 

identify nine different minerals (biotite, diopside, epidote, goethite, kyanite, scheelite, smithsonite, tourmaline, quartz). A 

hyperspectral camera in the Long-Wave Infrared (LWIR, 7.7-11.8 μm) with a LW-macro lens, an infragold plate, and a heating 

source are the instruments used in the experiment. For identification, a Sparse Principal Component Analysis (SPCA) based K-

means clustering (Sparse spectral clustering) is employed to group all the pixel-spectra in different groups. Then the best 

representatives of each cluster are chosen to compare with the ASTER spectral library of JPL/NASA through spectral 

comparison techniques. Spectral angle mapper (SAM) and Normalized Cross Correlation (NCC) are two of such techniques, 

which are used herein to measure the spectral difference. In order to evaluate the robustness of the clustering results among the 

mineral’s spectra, we have added three levels of Gaussian noise, 0%, 2%, and 4%, to input spectra which dropped the accuracy 

percentage 34.17% from 73.54%, for 0% to 2% additive noise, and 19.1%, for 2% to 4% additive noise. The results 

conclusively indicate the promising performance but noise sensitive behavior of the proposed approach. 
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SUMMARY 

Clustering approaches have been proposed for countless applications in different research areas such as pattern recognition 

and data-mining. One of the main interest for such approaches is the inherent benefit of being an unsupervised learning 

method. K-Means clustering [1] methods optimize the squared error function and has been used for many categorization 

applications. This method was enhanced to the kernelled clustering which transforms high dimensional data to lower 

dimensional data to improve classification. One kernel method that is frequently used in clustering approaches is Principal 

Component Analysis (PCA) [2], which creates spectral clustering methods due to application of eigenvalues for 

dimension reduction. PCA projects the data into a lower dimensional space i.e. eigen space and picks up the dimensions 

that correspond to the largest variances. From the mathematical point of view, this is like approximating the best low rank 

of the data. PCA however, is highly affected by noise due to being a linear transformation. On the other hand, Sparse 

Principal Component Analysis (SPCA) [3] shows more robust behavior in front of noise as compared to PCA. Hence, 

SPCA based clustering should theoretically lead to a better performance. In this paper we address a quantitative and 

qualitative assessment of mineral identification applying sparse spectral clustering in laboratory condition experiments, in 

the LWIR (7.7-11.8 μm) and strive to identify nine different minerals (biotite, diopside, epidote, goethite, kyanite, 

scheelite, smithsonite, tourmaline, quartz). 
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Fig.1 presents some results of the mineral identification using the proposed approach and shows the biotite, diopside, and 

epidote grains displayed in different colors for 0% and 2% additional noise along with their spectra. The approach used 

first clustering then discriminate them using spectral technique [6]. To test the noise robustness, we have added three 

levels of Gaussian noise, 0%,2%, and 4%, to input spectra which considerably decreased the accuracy percentage of the 

system from average of 73.54% to 39.36 and 20.26 (Table 1), respectively. The results indicate noise sensitivity of the 

approach which could be due to the low spatial resolution of region of interest (ROI) which decreases the level of Signal-

to-Noise-Ratio (SNR). Considering that, SNR in laboratory condition is relatively higher than hyperspectral infrared 

remote sensing hence the noise level is not a risk for grains segmentation. In addition, the accuracy calculation was based 

on counting the pixels whereas in real application aside from precise measurement even one or two pixels on the grain’s 

surface identifies the grain mineral content and additional noise only eliminates the weak signatures from the cluster’s 

group.  
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Mineral Quartz Noise (0%) Noise (2%) Noise (4%) Clustering 

time (s) 

SAM (s) NCC (s) 

Biotite 123*138 434 483 >90 67.39 <10 0.74815 0.262 0.299 

Diopside 126*143 253 705 70.44 15.546 55.92 1.0188 0.139 0.235 

Epidote 123*148 216 706 77.33 28.95 <10 0.43088 0.248 0.242 

Geothite 118*141 199 552 74.01 <10 <10 0.3995 0.0946 0.101 

Kyanite 123*144 68 510 77.14 33.71 <10 0.38055 0.219 0.256 

Scheelite 123*158 134 810 92.65 68.07 66.45 0.49851 0.207 0.262 

Smithsonite 119*160 343 913 80.39 54.20 <10 0.59569 0.223 0.231 

Tourmaline 58*80 122 9 79.91 76.43 <10 0.11002 0.201 0.221 

Table 1. Accuracy of automatic mineral identification using SAM is presented for Rigid-GT with the computational cost in every case. 

 

Fig.1 Mineral identification results using SAM [5] are shown for biotite, diopside, and epidote grains for 0% and 2% of additional noise 

along with their spectra are presented. Last columns shows the ASTER spectral library [4] for each of these minerals. 
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