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Abstract

The aim of the presented work is the detection of open defects in metallic materials using laser-material
interaction coupled with infrared thermal images. This process is a possible alternative for magnetic particles testing
and penetrant testing in the field of non-destructive testing. In this context, a numerical simulation model is
implemented with Comsol Multiphysics®. This model allows us to look for the process optimal parameters through

numerical experimental designs.
1. Introduction

Nowadays non-destructive testing becomes essential in industrial environment, as well at the time of the
manufacturing of materials or structures, as on installation in service in order to verify their health status. Among all
available techniques penetrate testing [1] and magnetic particles testing [2] are massively used for surface
anomalies. On-site, inspections are manually realized, on limited dimensions zones, and require use of revealing
products. For several years, on specific application, companies are in search of alternative methods. Among several
techniques, active thermography [3] appears as an interesting possibility.

Generally, thermographic methods used on metallic materials are based on the “flying spot”. The first
developments go back to 1960s [4]. Since then, diverse variants were born with improvements [5]-[10], concerning
essentially the way of making scanning or detection. Experimental works were accompanied with analytical
developments to know the shape of signal generated by defect presence and to be able to characterize it. This NDT
technique by active thermography for crack in metallic materials is different from classically method used for
composites, in which flash lamps are generally used as a source of excitement.

Besides, during inspections, materials can have various roughness which can generate locally absorptivity
and/or emissivity changes. Furthermore, crack can also behave as a located black body. It happens while optical
defect masks thermal resistance effect. In this case, Crack could be confused with regards to simple stripes, for
example. To mitigate this problem, an original method was developed [8], consisting in making a round trip of laser
source. This process allows then to eliminate the optical effects and to amplify the thermal defect signature. This
method based on line laser excitation is used in our work to detect crack in metallic materials.

The first stage consists in feeding numerical model by a series of experimental characterizations of
materials, laser and cameras, which could be used during various tries. Then, a numerical model developed with
COMSOL Multuphysics® 5.2 coupled with a numerically simulated camera, allows us to generate synthetic images
of a thermal scene, such as a real camera would see it. The numerical model then serves as basis to realize
numerical experimental designs.

2. Principles of experimental measurements and characterizations
2.1Principles of measurements

As illustrated in Fig. 1, both configurations of measurements must be experimentally and numerically
identical. Fig. 1a shows laser beam moving with a velocity v following x direction. Temperature is measured on
laser irradiated surface in the place where is located laser line thanks to a pin of thermographic detectors (in y
direction). In Fig. 1b, laser line moves at the same time as a test point which plays the role of detector in Comsol
simulation. Temperature is registered on every time step. An interpolation is also possible to adapt time step to the
frequency of the chosen camera. This point is equivalent to the signal of a pixel of a fictive camera.
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Fig. 1 : Principle of the method
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2.2 Experimental characterization

For numerical simulation needs, validation of temperature fields and code about simulate camera,
experimental characterization are obviously necessary. The first difficulty for the main part in the fact that thermal
imaging is used for anomalies detection, on materials with low emissivity, high thermally diffusivity, weakly
absorbent in laser radiation, and in a thermally disturbed environment, all this for low temperature variation with
regard to ambient temperature. Environmental radiance temperature (reflective temperature) constitute a key
parameter in these conditions, because it strongly disturbs calculated final temperature. It is evaluated according
to ASTM E1862-97 recommendation.

Emissivity of material was obtained by using a classic method of comparison, thanks to a black paint of
known emissivity which is close to 1, applied to a healthy zone of the sample. Dimensions of the line laser were
determined by using a plate of a strongly absorbing cover in laser radiation and highly emissive, in order to obtain
the most possible contrast signal. Thermography imaging for the first moments of laser irradiation allows us, by this
process to find the full width at half maximum (FWHM) up to the laser beam. Thanks to this value we can reach in
by equation (1). Line laser we study has a Gaussian profile. Fig 2 gives the profile we obtained after characterization.
It is reconstituted with Comsol. The laser power is also measured thanks to a power meter. Camera protection with
regards to radiance requires using of a filter which was beforehand tested. Its transmission is taken into account.
The absorptivity of the material is estimated at 0.32 [11]. ¢ is the laser radius at 1/e of its amplitude.

FWHM = 2,355 * ¢ 1)

Fig 2 :Line laser beam profile remade in Comsol
3. Numerical Modelling
3.1 Description

For modeling crack detection, various approaches are used. We can note purely analytical approaches [8], [12],
[13]. Other approaches were developed in order to take into account “optical” aspect of the defect [14], [15].
Nowadays finite elements methods are very wide-spread with diverse and varied approaches which concern
essentially limited on punctual laser using [16], [17].

In our study, various approaches were explored:
1. The defect is filled with air and we attribute it an absorptivity different from metal one. This absorptivity is
calculated thanks to Casselton formula [6].
2. The defect is filled with air and its absorptivity is equal to zero
3. We consider the defect as a thin resistive layer as illustrated in Fig 3a. Imposed thermal resistance is
calculated according to the opening of studied defect and its volume.
This third approach corresponds exactly to what we are looking for experimentally. It is used in this work. With this
model, we will not have meshing problem, and we reduce significantly time calculation. Fig 3b shows complete
geometry used for numerical simulation. Thickness is determined by taking into account thermal diffusion layer.

—

Real nature of defect Modeling by a thin layer

Resistive thin layer

a

Fig 3 : Adopted geometry
3.2 Adopted numerical modeling method

This study is made in two main stages:
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The first one consists in modelling the thermal scene with Comsol Multiphysics. These calculations allow
us to obtain temperature fields of material surface, for every time step with a given spatial resolution. This spatial
and temporal resolution must be better than the chosen camera.

The second stage consists in exporting these temperature fields in a code which we developed with Matlab allowing
us to simulate thermal camera images. The aim is to take into account camera parameters (emissivity, reflected
temperature, IFOV, frequency, etc...) during observation.

In this configuration, the choice of not using symmetry has been made. The obtained temperature map is
used to generate thermal scene converted by the fictive camera according to the chosen parameters (IFOV,
frequency, ...). Fig 4a gives an example of geometry, Fig 4b illustrates the adopted meshing.

Resistive thin layer

/ Open crack 5
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<4— Stainless
steel

o
Fig 4 : Geometry and meshing of the examined material
Heat equation is used to solve this problem. Without thermal source this equation is given by Eq 2.
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T is temperature, k is thermal conductivity, C, is the specific heat capacity, and p is the density.
Line laser is represented by a power density which is given by Eq 3.
-(y-¥0)* 1 —(x— xo—vt)2

2
e 29% e  20% ©)

ayV2m .O'x\/ZTI

@ =A.P.
A is the absorption factor, P is the laser power, o, and o, respectively represent radius of laser at 1/e of amplitude
on x and y axes. ¢ is the power density, v is the laser velocity.
4. Results
4.1 Signal profile
A defect thermal signature is visible on Fig 5. The one-way signal presents a peak given by thermal

resistance and a hollow due to a deficit of heat, where from the naming “bipolar signal”. Numerically we can notice
that the fact of making a round trip allows to double the obtained bipolar signal.
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Fig 5 : Normalized temperature on one-way (a) and round trip signal (b)
4.2 Comparison between simulation and experimental fields temperature

The aim of this part is to compare temperature between simulation and experimental in order to validate
our model. Comparison is made by using maximal rises of temperature obtained under the line laser compared with
material initial temperature. We used a steel material with an open crack and the other material is a stainless steel
piece without defect. Five (5) velocity (V1, V2, V3, V4, and V5; with V1<V2<V3<V4<V5) were used for these
measurements.

421 Case of material without defect: stainless steel
As illustrated in Table 1, we can notice that temperature difference between simulation and
measurement are low. They are all inferiors to 1°C. Few differences observed could come from emissivity errors,

of powers, environmental temperatures etc... The relative gap with regard to temperature rise is lower than 5%.

Table 1 : Temperature differences between numerical simulation and measurements in the case of stainless steel

material
Vitesse Temperature differences on the surface Relative gap with regard to temperature rise
of the material (°C) (%)
V1 0,5 3,8
V3 0,4 34
V4 0,1 1,1

4.2.2 Case of a material with an open crack: steel

We measures temperature rise on two points. On the surface of the healthy material (A) and just before
the defect (B). This description is illustrated in Fig 6 (point (B)) gives us temperature rise due to thermal
resistance. 40 W power with a line Gaussian laser is used for this heating.

Laser position

Crack position

- P
Fig 6 : Position of test points and line laser for the post-treatment
Table 2 gives temperature differences between numerical simulation and measurements with steel sample. We

can notice that numerical and experimental results have the same order of magnitude far from the defect and
closely to the defect (thermal resistance effect). We can also notice that amplitudes (thermal signature of the
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defect) for numerical and experimental have the same order for the various velocity. The variances turn around
1°C which corresponds to 8% rise during laser passage.

Table 2 : Temperature differences between numerical simulation and measurements for a steel piece with an

open crack
Temperature Relative gap with Temperature Relative gap with regard
difference on the regard to temperature difference near | to temperature rise near
Velocity surface far from the rise far from the defect the defect (°C) the defect (%)
defect(°C) (%)

V2 2,3 17,9 0,7 4,2
V3 0,2 1,7 0,9 5,9
V5 1 10,1 0,4 34

These various results show simulation model reability. Thus this model is used to carry out the numerical
experimental designs.

4.3 Numerical experimental designs (NED)

In this study, we chose both essential parameters that are reduced velocity (v*) of the line laser (velocity
divided by a reference velocity) and the reduced opening 0* (defect opening divided by a reference opening). Two
objective functions were defined: normalized amplitude defined by amplitude signal divided by a reference
amplitude and “efficiency” defined by Egs (4) et (5). The normalized amplitude is defined by Eq 5.

(4)
Ef = AnNv*

An = 0,914 + 0.0002.0* — 0.0185. v* ©)

Ef = 1,068 + 0.001.0* + 0,1467.v* — 7,1398.1077.0** — 1,4712.107°0*. v* — 0,0038v" (6)

We can notice on Fig 7 that reduced amplitude is higher for low reduced velocity coupled with a high
reduced opening. We can also observe that, whatever is the opening, the highest amplitudes are obtained with low
velocity. That is due to important heat accumulation for low velocity. However, it would be necessary to adopt not
too lower velocity to be effective in term of process productivity, but also not too high in order to not degrade the
signal. That is in this perspective that we set up an objective function named “efficiency”. Fig 7b gives ranges of
optimal reduced velocity which allow good detection. For example, in this studied case, optimal reduced velocity is
around 18.
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Fig 7 : Influence of travel velocity and opening on bipolar amplitude signal, a: normalized amplitude, b: efficiency
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5. Conclusion

The realized experimental characterizations allow us to feed a simulation model by finite elements coupled
to infrared thermal observation. The use of resistive thin layer is sufficient for modelling thermal signal due to with
a round trip scanning. This process allows to double the defect thermal signature and to eliminate local changes of
absorptivity and/or emissivity.

The realized measurements allow to see that the simulated and measured temperatures fields for a healthy
material are almost identical. The calculated temperature rises due to a thin thermal resistance are the same order
of magnitude than measured one. Some observed differences probably come from errors on the laser power value
and the emissivity and absorptivity values.

The developed numerical model allows us to carry out the first study of the process by numerical
experimental designs. This study permits to have an idea on the effects velocity and defect opening influence on
the signal amplitude. It shows that most low speed, greater is the signal amplitude. It also shows that bipolar signal
amplitude evolves linearly with these two parameters. The NED also allows us to determine process efficiency,
which is the optimal reduce velocity in order to obtain good and rapid detection.
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