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Abstract  

The paper concerns two methods of inverse problem solution for the equation of heat conduction, what allows 
to determine the thermal diffusivity of the materials using pulsed infrared thermography. Both methods are related to 
finding the time dependence of the temperature of an infinite plate surface, when opposite surface of the plate was 
heated by a short heat pulse. This dependence is compared with the time evolution of the temperature of the rear plate 
surface measured by the means of an infrared (IR) camera. Such comparison allows to extract, from experimental data, 
the information about thermal diffusivity of the tested material. 

1. Introduction  

Progress in determining thermal properties of  materials, such as thermal diffusivity, is possible owing to the 
development of the active infrared thermography techniques. Thermal diffusivity α characterizes the material in a 

complex way, because it includes the heat conductivity λ, the specific heat sc and the mass density  of the material: 

,
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



          (1) 

One of active thermography techniques is the pulsed infrared thermography (PIRT), based on stimulation of the plate 
surface by a short heat pulse (few milliseconds) and recording the material response, as a time evolution of the 
temperature distribution on the rear surface, by the means of an infrared (IR) camera. Such evolution contains 
information about the thermal diffusivity of the tested material. To obtain information about thermal diffusivity of the  
tested material one needs to use the inverse problem solution. In order to do this, the equation of heat conduction should 
be solved for the initial-boundary conditions consistent with the experiment.  

Two methods: a) and b) of the equation solution are presented. The solution obtained by method a) has been 
compared with the experimental time evolution temperature of the rear  surface  measured by means of IR camera  and 
thermal diffusivity of selected  materials has been determined. Application of the method b) to determine the thermal 
diffusivity is still developed. 
 

2. Method a) 

2.1. Theoretical foundations of the method 

The theoretical basis of determining thermal diffusivity of materials based on solutions of heat conduction 
equation formulated for a plate of a finite thickness when one of its surfaces is uniformly heated by a short heat pulse. If 
the surface of the plate is sufficiently large in comparison with the region of interest, it may be considered as infinite and 
then the one-dimensional model of heat conduction can be presumed (figure 1). It is assumed that the transport of heat 
by convection and radiation compared with the heat  conduction mechanism are negligible. 

The time evolution of temperature of the opposite surface with respect to the stimulated one is described by the 
solution of the heat conduction equation for the plate where z = g. This solution includes the thermal diffusivity of the 
material of the plate. Therefore, if the temperature of this surface is measured in time, it is possible to determine the 
thermal diffusivity of the tested material. 

 
 

Fig. 1. Schematic representation of the infinite homogeneous layer of material 
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The differential equation of heat conduction for the one-dimensional model has the following form: 
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Eq. (2) has been solved for relatively simple, homogeneous initial and boundary conditions: 
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It is assumed than a heat pulse stimulation has the fallowing form: 

        q t z         (4)

   
Using of the Fourier transform, the solution of the heat conduction equation for the plate, whose surface is heated by 
heat pulse has been obtained [1]. The dimensionless the solution, for z=1 has the form: 
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The elements of the series  are getting smaller with t, So, it can be seen that for a sufficiently large value of t, error 
omission of elements k >1 does not exceed the error of temperature measurement. Thus, series can be reduced to the 
first element:                                                               

     21
1 2exp .      
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The dimensional form of the solution is as follows: 
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Tmax is the temperature of the surface after a long time since heat stimulation. The logarithm of Eq. 7 has a linear 
character with respect to time. 
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is the tangent of the slope straight line to the timeline. 
So, if one of the specimen surfaces will be heated by a short impulse of heat and the temperature of the opposite surface 
will be measured as a function of time, we can determine the thermal diffusivity α: 
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2.2. Experiments. Method a) 

Experiments were performed on materials: austenitic steel 316L, aluminum alloy Al99,5, electrolytic copper and 
polystyrene cut out from various sheet thickness. Dimensions of the specimen were chosen in such a way, so that the 
influence of its edges on the surface temperature distribution was negligible. In order to ensure high and homogeneous 
emissivity the specimen surface was coated by graphite paint. The emissivity of graphite is 0.86. The surface of the 
specimen was uniformly heated using the halogen lamp of the pulse energy of 6 kJ. Pulse duration was 3 ms and the 
lamp to specimen distance was equal to 0.5m. Temperature distribution on the opposite surface vs. time was measured 
by the Titanium 560M infrared thermographic system (Cedip Company) with InSb detector. The spectral range of the 
detector was (3.6-5.1) μm. The thermal sensitivity of the system at 25 ºC is 20 mK. The thermal images (640 x 512 
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pixels) were recorded with the frequency 100 Hz. The IR camera and stimulating lamp were located at the rear side of 
the specimen (figure 2). 

The thermal image is a surface distribution of infrared radiation power, emitted by the tested surface. This 
distribution depends on emissivity of the surface and temperature distribution on this surface. Thus, knowing the 
emissivity of graphite (ε=0.86), the surface temperature distribution was determined and the average value of 
temperature of the specimen’s back surface as a function of time was obtained. This function is presented in the figure 3 
In the figure 3, there is a fragment of a graph, in which the average temperature value of the tested surface is constant. 
Hence, it may be concluded that the process of convection does not develop until t=0.72s , and it may be not taken into 
consideration. The maximum temperature is equal to the surface temperature, which would be reached after a long time 

if heat convection did not take place,
maxT T . The dependence of  maxln T T  on t is presented in figure 4.  

 
 
Fig. 2. The scheme of the measuring systems for determining the diffusivity of solids. 1 is specimen, 2 is flash 

lamp, 3 is power supply, 4 is IR camera, 5 is computer with appropriate software to enable recording thermal images of 
the specimen surface as functions of time 

 
 

Fig. 3. Experimentally determined the surface temperature vs. time for austenitic steel 316L. The marked plato 
shows that the convection development requires a certain time interval 

 
Fig. 4. The dependence of  maxln T T on time for austenitic steel 316L 

The graph of this dependence has been approximated by the straight line: 

( ) 16.13 0.078ln T T t             (11) 
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The comparison of the equation of this line with Eq. (8) (figure 5) shows that 
2
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        (12) 

 

 

Fig. 5. The dependence of   maxln T T vs. time approximated by the straight line. Austenitic steel 316L 

Thus, after transformation of Eq. (12) and substituting the value of the steel sheet thickness g=1,5 mm, the value of 
thermal diffusivity of 316L steel was determined, 
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The same procedure was applied for all mentioned materials. The obtained results were compared with literature values 
[2] of thermal diffusivity. This comparison is presented in table 1.  

Table 1. Comparison of the thermal diffusivity of the tested materials obtained in the presented work with the 
values for this materials given in the literature [2] 

Material Thermal diffusivity given in the 
literature [m

2
/s] 

Thermal diffusivity obtained in the 
presented work [m

2
/s] 

Difference [%] 

Austenitic steel 316L 3.71×10
-6 

3.68×10
-6

 0.8 
Polystyrene 1.138×10

-7
 1.172×10

-7
 2.9 

Aluminum alloy Al99,5 9.43×10
-5

 9.10×10
-5

 3.5 
Electrolytic copper 1.13×10

-4
 1.18×10

-4
 4.2 

 
The values of the thermal diffusivity of tested materials determined using method a) are very approximate to literature 
ones obtained by using more complicated methods. But the method a) has the fallowing drawbacks:  

 The heat source function has the form of Dirac deltas in time and in space, whereas the duration of the heat 
impulse is finite.  

 The solutions are usually  have a form of series. 
In case of above limitations attempt was made to find a solution of the heat conduction equation in a form of analytical 
function. Therefore method b) is proposed. 

2.2. Method b) 

In the method, stimulation of the plate surface by heat pulse was taken into account in boundary condition as 
the temperature dependence of time for  z = 0: 

   T z 0, t t ,                     (14) 

 Mathematical form of the function  t  was found on the basis of  temperature time evolution of the stimulated surface 

of the plate, which was measured by means of IR Thermography (figure 6). Thus the formulated condition is entirely 
consistent with the experiment. The initial condition and the boundary condition for z=g are the same as in the method a),  

http://dx.doi.org/10.21611/qirt.2014.093



         00 0
T
z g ,t ,T z,t T .

z


   


                 (15) 

In this case, we solve the homogeneous equation: 
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2
.
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                    (16) 

 

Fig.6. Function  t measured experientially 

To find the solution  the so-called  heat penetration distance (depth) function  t is introduced, through which the 

temperature depends on time [3, 4],  i.e.:     ˆT z,t T z, t  and  its properties are such that at time 1t t  the part of 

plate described by the condition  z t  is at reference temperature 0T , and  there is no heat transferred beyond the 

point  z t ; here 1t denotes the time moment at which the penetration distance function is equal g: 

     1t g.                   (17)    

Hence the solution  will be searched  in two steps: 1. for 1t t ,  and 2. for 1t t .  Moreover, following  the integral heat 

balance method of von Karman [5], in each of these steps will be look for under  two simplifying assumptions: 

 distribution of the temperature inside the plate will be assumed as a polynomial of  order i = 2 and 
 the partial differential equation (14) will be substituted  by its integral form: 
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After integration of RHS of (18) and use of the Leibniz rule of integral differentiation we obtain: 
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2.2.1 First step   t g   

In this step we assume that   0v t   and    t t .   Then, due to definition of the function   t  and  our initial 

condition (2), we have:    0T w t ,t   and 
 

0
z w t

T
.

z 


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
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dv

dt
 , and introducing  the mean 

temperature value of the plate part  0, by   1T t  :
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the heat balance equation  (19) reduce to     
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According to simplification the distribution of  T z,t  in this step is assumed in the form of the polynomial 

      2
0 1 2T z,t a a z a z    :  1T z,t where ia  depend  on  t                (22) 

From the  initial and boundary conditions (14) and (15) we have constrains:        1
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Substituting  above conditions  to the expression for  1T z,t , we obtain: 
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Now, having the temperature distribution in the plate part  0,  the mean temperature value 
1T   can be calculated  

by use  of (20). After integration of:   1T t  :=
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we have: 
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Now we substitute  the expression (24) and (23) into (21), to get 
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After reduction and introduction new functions:     0t t T    and  t :   
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The solution of (26) with the initial condition  
0

0
t
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
  is  

http://dx.doi.org/10.21611/qirt.2014.093



       
 

 

2 0 0

0

12

t s

t

exp p d ds

t t ,

p s ds

 

  

 
 
  

 



                           (27) 

where   p s :
 

    2
2
d log sd s

.
s ds ds





 

Integrating (27), we obtain : 
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To get the explicit form of the solution  for  t we need the form of  t . In our case this form can be written as 

      1 0t b t T ,    if 0 0 001 Mt . s t ,                (29a) 
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with positive constants b1 i ci, i = 0, 1, …,6. Hence  for  s  we can write 
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The last expressions together with (14) give as for  t  in the first sub-domain 0 0 001t . s    
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 and for  t  
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In the second sub-domain  0 06Ms s .   we get: 
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We end  this step with the condition on the value of 1t  which reads 
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2.2.2 Second  step 
1

t t  with   1t g   

In this step in (18) we assume that   0t   and  w t g. Introducing the mean temperature value of the whole plate   

 0,g     by  2T t  :  
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T z,t dz,
g

                                                    (34) 

the heat balance equation (19) reduces to  
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2 0z g z
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Due to the boundary condition (14) and (15) the first term on RHS vanishes and the last  equation simplifies to 
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According to our simplification the distribution of  T x,t in this step is assumed in form of the polynomial 
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Let us introduce new unknown function describing temperature values at the rear surface of the plate. 

     u t :  T z g,t ,                   (38) 

then for the time dependent coefficients 0 1 2ik ,i , ,  we have the system of equations: 
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Solving this system  we get      2
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2

2 2 2

2zg z
T z,t T z,t t t u t t u t ,

g g
         

and after reduction, we and up with           
2

2 1
z

T z,t T z,t u t t u t .
g


 

     
 

                 (39) 

Now, having the temperature distribution in the whole slab we may calculate 
 

0z

T z,t

z 




  and the mean temperature 

value 
2T  by use of (34). For the gradient we obtain: 

             

   
 

         0 0

2 2
1

z z

T z,t z
t u t u t t .

z g g g
 

 

  
      

  
                            (40)   

After integration of 
2T  :        

2

0 0

1 1
1

g g
z

T z,t dz u t t u t dz
g g g


  

      
   

  ,  we have:  
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                    
3

2 0

1 1
1 2

3 3 3

gg z
T t u t t u t u t t u t t u t

g g
  

 
           

 
            (41) 

Now, we substitute  the expression (41) into (36), to get    2 2

1 2 2 2

3 3

d du
t u t .

dt g dt g

  
                                (42)

                  

Introducing  :
2g


 , we obtain:    6 2 6

d du
t u t ,

dt dt


     or  

      
 1

3 3
2

d tdu
u t t

dt dt


                      (43) 

The equation (43) is valid for 1t t ,  where 1t  is the time at which solution  t  of (26) given by (32) is equal to g - the 

thickness of the plate. To solve (43) we need an initial condition at the moment. However, the function  u t , defined by 

(38) gives the value of the temperature  at the rear face, at the time 1t  is the first moment at which the heat reaches that 

face and before that time the rear was at the reference temperature. It means that 

            1 0u t T                      (44) 

The solution of (43) is:        1 1

1

3 3

0

1
3

2

t
t t s t

t

d
u t e s e ds T .

ds

 
   

  
    

   
               (45) 

To find  u t  we need the explicit of  
 1

3
2

d s
s

ds


  , knowing that   is given by (29a) and (29b). For derivative 

of   we have: 
 

1

d s
b

ds


  if  0 0 001s . s   : Ms and 

 
 

6
1

1

i

i
i

d s
ic s ,

ds

 



    if 0 0 06s . s   

Hence we get: 

   
 

1 0 1

1 1
3 3 3

2 2

d s
s b s T b ,

ds


  

 
    

 
 if 0 Ms s                                           (46a) 

and  
   

 
5

6 1
6 1 0

1

11
3 3 3 3

2 2 2

i

i i
i

d s i c
s c s c c s c ,

ds


   



 
       

 
 if 0 0 06s . s                       (46b) 

Substituting (46a) and (46b) to (45) we obtain: 

 for 0 Ms s  ,        1 1

1

3 3

1 0 1 0

1
{3 }

2

t
t t s t

t

u t e b s T b e ds T
    

 
    

  
                            (47a) 

 and  for 0 06Ms s . s  , 

     
   1 1

1

5
3 36 1

6 1 0 0
1

.
1

{3 3 3 }
2 2

t
it t s t

i i
it

i c
u t e c s c c s c e ds T

      




  
        

   
                       (47b) 

Expressions in RHS of  (47a) and  (47b) can be written as the sum of integrals: 
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for 0 Ms s  ,          1 1 1 1

1 1 1

3 3 3 3

1 0 1 0

1
3 3

2

t t t
t t s t s t s t

t t t

u t e b se ds T t e ds b e ds T
           

 
    

  
               (48a) 

and for 0 06Ms s . s  , 

 

       
   

   

1 1 1

1 1

1 1

1

5
3 3 36

6 1
1

3 31
0 0

1
3 3

2

3 .
2

t t
it t s t s t

i i
it t

t
t t s t

t

i
u t e c s e ds c c s e ds

c
e c e ds T

  

 

 



     




   

  
      

   

  
    

   

 



          (48b) 

Having  the explicit form of the integrals in  (48a) and (48b) we may pass to their calculation. To end  this we 
first notice that we are still delaying with the polynomial of order 6 in the temporal independent variable. Hence  we need 
the general form of the indefinite  integral 

     is exp s ds  

with i = 0, 1, …..6 and constant   3   . It is not difficult  to prove, using the mathematical induction principle, that 

 

    
    

11 2 3

2 3 1

1 1 21
1 1
i ii t i i i i s

i i

i i i i ii i ! i!
s e dt s s s s ..... s e . 

     

  



  
        


        (49) 

Using (49) to calculate the integrals in the expressions (48a) and (48b) we get the form of the function u(t).  
According to (38), this function describes time evolution of temperature at the rear surface of the tested plate. 

Then substituting 
2g


   into  u t and choosing  so that the theoretically found  function  u t coincides with the 

experimentally measured temperature dependence on time, for the rear surface, the thermal diffusivity of the tested 
material can be determined. Such procedure will be the subject of a further work. 
 
 
3. Conclusions 
 
 It has been showed that inverse problem in thermal diffusivity determination using pulsed IRT can be solved by 
comparison measured time evolution of the temperature of the opposite specimens’ surface to the stimulated one with 
theoretical solution of the heat conduction equation at initial and boundary conditions consisted with the experiment. Two 
methods of that solution has been presented. The first one although its limitations gives quite satisfactory results. Second 
one still require further development.  
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