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Abstract  

Painted caves such as Lascaux are highly sensitive to their surrounding atmospheric conditions. To preserve 
them for the upcoming generations, it is necessary to understand thermal and mass transfers that happened between the 
painted walls and the air. A cave has been monitored with an infrared camera and a Peltier sensor. The singular value 
decomposition has been first applied to extract the relevant information. It revealed a non-random thermal behavior of 
the wall. Then a semi-infinite model combined with a Fourier analysis led us to evaluate the thermal effusivity of the cave 
wall. This latter is subjected to large measurement uncertainties. 

1. Introduction 

Caves are a complex environment. Their inner average temperature remains almost constant during the whole 
year and they present a very high humidity rate, close to 100%. Due to the daily outside temperature variations, an air 
circulation is created between the bottom of the cavity and the outside (the reversed process happens as well, depending 
on both the temperatures of the cavity end and the outside). Some of those cavities, such as Lascaux (Dordogne, 
France), are subject to a high level of interest because of their painted walls: they represent a proof of our ancestors’ way 
of living. At the same time, those works of art are very sensitive to their surrounding environment. For example, the 
simple presence of a person on site can slightly unbalance the thermal equilibrium of the cavity. This perturbation, as 
negligible as it seems to be, could have dramatic and irreversible consequences on the shape of those paintings. 

A lot of efforts have been dedicated for years to the preservation of those works of art. This brings about the 
thorough understanding of how the air cavity interacts with the paintings. It also means specific measurements have to 
be set up and this is where it gets complex. Therefore this paper discusses the possibility of using the infrared 
thermography as a way of conducting in situ measurements. Indeed, this technique presents the advantage of being a 
non destructive method: it means measures can be carried out without any physical contacts with the studied surface. 
This technique has already been implemented to the conservation of historical monuments [1,2,3], especially by 
detecting the presence of humid zones at different locations on the building walls. Humidity rates are crucial to know 
because they are one of the mediums of moisture spreading, which is an indicator of the building shape.  

Rather than using a whole set of infrared images, only a couple of them are often analyzed. Therefore, multiple 
information like a time behavior after a thermal perturbation is put aside. In 2012, Dumoulin et al. [4] explained how they 
studied an Italian bridge during three days. The set of infrared images revealed interesting inner characteristics after 
being computerized. Those different works, related to the preservation of multiple kinds of buildings, inspired us to apply 
thermographic studies to cavities. 

This paper aims at adapting non-intrusive thermal measurement methods to painted cave walls. The method 
proposed combines the singular value decomposition (SVD) and the Fourier decomposition in order to analyse a set of 
infrared images. Results are used in order to estimate the effusivity of the wall in taking into account the uncertainties in 
taking into account the uncertainties. The experimental site and the measuring devices are presented in section 2. 
Sections 3 and 4 are devoted to the analysis of measures with respectively the Singular Value Decomposition and the 
Fourier decomposition. Last section includes a description of the semi-infinite wall model used to determine the thermal 
effusivity of the wall. 
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2. Measurements realization 

Those phenomena were observed inside a cavity which doesn’t present any historical concerns. In other words, 
it is only used for scientific purposes. This place is located in Dordogne (France), on the township of “Les Eyzies de 
Tayac Sireuil”. Only the entrance to cavity was studied (figure 1). Since this part is close to the surface, it is still 
influenced by the daily temperature variations compared to the bottom of the cavity. 

 
Fig. 1. Cavity plan 

The set up included various sensors (temperature, humidity, heat flux) and an infrared camera. The Peltier 
sensor was in the field of view of the infrared camera (figure 2) which recorded a picture of it each ten minutes during an 
entire week. Five temperature sensors and three humidity sensors were installed on a measurement bar in order to 
properly monitor the temperature gradient which is established from the floor to the ceiling of the cave corridor. This is 
due to the temperature difference between the outside and the bottom of the cavity since heat moves from warm to cold 
parts: depending on those two temperatures, a permanent air movement occurs between the outside and the bottom of 
the cavity. Since warm air has a lower density compared to cold air, it moves at the upper part of the corridor. Those air 
movements, combined with high humidity rates, are likely to generate vaporization and condensation phenomena at the 
surface of the rock where the Peltier sensor is set up. 

 
Fig. 2. Material disposition 

  

http://dx.doi.org/10.21611/qirt.2014.192



3. Singular value decomposition analysis 

The experience took place during a week: it recorded almost one thousand thermograms. The first idea to 
interpret them would be to look at the whole set of picture one by one. This technique did not show any characteristic 
behaviors because the phenomena we were looking at had very low magnitude variations. So it made them hard to be 
visually detected. 

Therefore, the singular value decomposition was implemented as a statistic method in order to extract the 
relevant information from the infrared images. This method is based on the decomposition of an initial matrix A into three 
others by following the below definition [5]: 

 � � � � � � �� (1) 

For a physical parameter which depends both in space and time, the former definition can be written again by: 

 A	x, t
 � ∑ u�	x
 � S� � v�	t
�  (2) 

 
Fig. 3. Data set of infrared images 

U is an orthogonal matrix, as well as V. Regarding S, this is a pseudo-diagonal matrix. In our case, the matrix A 
represents the entire set of infrared images, that is to say a physical parameter which depends on both time and space 
as illustrated through the figure 3. The SVD algorithm is used to reduce the matrix A to a compact statistical 
representation of the spatial and temporal variations. The columns of the matrix U contain the orthogonal modes 
describing the spatial variations of the original data. The contributions of those modes vary in time according to the 
associated matrix V [6]. The matrix S contains the singular values of A on its diagonal; they are stored in a decreased 
order. Deciding the number of modes to be kept requires looking at the singular values themselves. Most of the time, the 
first three to five modes account for more than 99 % of the total data variance. This is an important diminution of the 
original thermographic data set which often contains hundreds of thermograms. In our case, the first two modes account 
for more than 99 % of the total data. The following pictures (from figure 4 to figure 9) illustrate those two modes: the 
matrices on the left represent the orthogonal modes U, associated with their respective time variations V on the right. 

 

Fig 4. Representation of U1 

 

Fig. 5.Representation of V1 x S1 
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Fig. 6 .Representation of U2 

 

Fig. 7. Representation of V2 x S2 

 

Fig. 8. Representation of U3 

 

Fig. 9. Representation of V3 x S3 

This first mode represents the global dynamic behavior of the data set. Regarding the second mode and its 
temporal evolution, they are fluctuating around zero. This means the second mode is a correction of the global dynamic 
behavior. The SVD method showed a characteristic behavior of the wall shooted by the infrared camera: it is clear by 
looking at the temporal responses this behavior is not a random one but a periodic one. Besides, we can notice a 
difference of behaviour between the Peltier sensor and the wall where it is attached. Regarding the first mode, the wall 
presents a slightly stronger reactivity to the excitation introduced by the temporal dynamic V1(t). The second mode puts 
in evidence an opposite second order dynamic between the Peltier sensor and the wall. Indeed, the sign of U2 is 
different between both these zones. Last, the third mode cannot allow to distinguish the wall and the Peltier sensor. Its 
dynamic has not any significant meaning. Thus, only the two first modes have a periodic dynamic. 

4. The Fourier decomposition 

The Fourier decomposition has to be applied to a temporal signal. So for the temperature, a mean value (figure 
11) has been computed at each time step for a region of pixel (Figure 10).  

 
Fig 10. Pixel zone for the mean temperature 

 
Fig. 11.Temperature of the pixel zone 
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A frequency spectrum of the heat flux and temperature signals, V1(t) and V2(t) has been computed. The figures 
12 to 19 show the frequency spectrum for the left ones and their respective power spectral densities (also known as 
PSD) for the right ones.  

 
Fig. 12. Heat flux Fourier transform 

 
Fig. 13. Heat flux PSD 

 

Fig. 14. Wall temperature Fourier transform 

 

Fig. 15. Wall temperature PSD 

 
Fig. 16. V1(t) Fourier transform 

 
Fig. 17. V1(t) PSD 

http://dx.doi.org/10.21611/qirt.2014.192



 
Fig. 18. V2(t) Fourier transform 

 
Fig. 19. V2(t) PSD 

The characteristic frequencies identified on those two signals are presented through the table 1. 

Table 1. Characteristic frequencies 

Signal Characteristic frequency Characteristic period 

Heat flux 
4.787x10-6 Hz 208 899 s 
1.074x10-5 Hz 93 110 s 

Wall temperature 
5.828x10-6 Hz 171 585 s 
1.166x10-5 Hz 85 763 s 

V1(t) 
5.828x10-6 Hz 171 585 s 
1.166x10-5 Hz 85 763 s 

V2(t) 
9.713x10-6 Hz 102 955 s 
2.137x10-5 Hz 46 795 s 

 
At first, we can notice that the wall temperature and V1(t) have exactly the same characteristics. This fact can be 
explained by the remembering that the first mode of the SVD analysis contains more than 99% of the total data. For the 
the heat flux and wall temperature signals the characteristic periods are not exactly the same but they both correspond to 
a time variation of approximately two days for the first one and approximately one day for the second one (an entire day 
has 86 400 seconds). This means a phase lag calculation can be implemented regarding those two signals at those two 
identified frequencies. The Fourier decomposition was used to realize it. Indeed, it specifies a periodical function can be 
written as a sum of sine and cosine functions, as explained by the following equation [7]. 

 f	t
 � �
��

∑ τ�	ω�
������ exp 	iω�t
 (3) 

By considering only the first harmonic of the Fourier decomposition, applied to each of the two signals, we can write the 
following :  

 Fl�  	t
 � $
%&

� A�	ω�
 � sin )$*�
%&

+ (4) 

 T� 	t
 � $
%&

� B�	ω�
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%&

+ 0 $
%&

� C�	ω�
 � sin )$*�
%&

+ (5) 

23�  refers to the first harmonic of the heat flux signal and 4�  refers to the first harmonic of the wall temperature signal 
(recorded by the camera). The different coefficients are expressed by the Fourier’s theory: 

 A�	ω�
 � 5  Fl6789 :;<�89	t
%&
= sin )$*�

%&
+ dt (6) 

 B�	ω�
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Calculating the previous integrals allowed us to determine and plot the first harmonics of the two studied signals: this is 
what the figure 20 expresses.  

 
Fig. 20. First harmonic reconstruction 

The two curves present a phase lag of 42°, which is  really close to the characteristic 45° of a semi-i nfinite 
model. This means the cavity wall we examined can be reasonably assimilated to the semi-infinite model. However, this 
is only true for the two frequencies identified since this characteristic phase lag was determined only for those two 
frequencies. 

5. The semi-infinite wall model 

The previous analysis showed that the behavior of the wall is not a random one. We chose to confront it to 
mathematical models that are able to describe how a wall reacts to a heat flux excitation. Since cave walls are much 
thicker than the other characteristic parameters, the semi-infinite wall model appeared to correctly match this 
consideration. 

It gives a relation between the heat flux variations ),0( nωΦ  at the surface of the wall and the temperature 

variations ),0( nn ωτ  also taken at the surface: this is what stands the following equation [7]. 

 ),0(),0( nnnn c ωτωλρω ××=Φ  (9) 

It is interesting to notice this equation introduce a phase angle of π/4 between the heat flux and the 
temperature: this is one of the characteristics of this model. Calculating a phase lag between two physical parameters 
implies they both have the same frequency. This is not the case here because the two signals we are studied came from 
in situ measurements. It means each one is composed of many frequencies since they are not theoretical signals. 

 
Since the semi-infinite model is partially valid, the equation which describes it can be used. In terms of norm, this 
equation can be written as following: 

 
),0(

),0(

nnn

ncE
ωτω

ω
λρ

×
Φ

==  (10) 

The term cE λρ= is the thermal effusivity of the material. It can be evaluated by computing the magnitude of both 

the surface heat flux and the surface temperature. There are two frequency values, therefore we obtained two values for 
the wall effusivity (see table 2), which are actually the effusivity of a stone material.  
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Table 2. Computed effusivities 

Characteristic period Corresponding 
effusivity 

τ1 = 93 110 seconds E1 = 491 J.K-1.m-2.s-1/2 
τ2 = 208 899 seconds E2 = 735 J.K-1.m-2.s-1/2 

 
Those values are a little smaller than regular stone effusivities. Typically, for regular sandstone, the effusivity is about 
1938 J.K-1.m-2.s-1/2 with a thermal conductivity of 2.3 W.m-1.K-1, a density of 2300 kg.m-3 and a specific heat of 710 J.kg-

1.K-1. 
Our calculations are based on wall temperature variations recorded by the infrared camera and on heat flux variations 
recorded by the Peltier sensor. Those signals had extremely small magnitudes which means even a weak disturbance 
will have a strong impact on the final effusivity calculation. By taking into account those measurement uncertainties and 
implementing them into our effusivity calculations, the following range values were obtained: 

2121
2

2121

2121

1

2121

...2145...171

...1432...115
−−−−−−

−−−−−−

≤≤
≤≤

smKJEsmKJ

smKJEsmKJ

 

Such values are now closer to regular rock material effusivities which raises the importance of the measurements 
uncertainties. 

6. Conclusion 

Using the infrared thermography to study cave wall behaviors toward thermal excitations revealed interesting 
characteristics. Indeed, even if the magnitude variations of the signals were really small, they were large enough to be 
detected by the infrared camera, associated with sensor measurements. At the moment of starting this project, we were 
not able to decide whether or not applying the infrared thermography to cave wall studies would be a relevant work. 
Finally, it ended up finding the thermal effusivity of the studied wall. Since it is subjected to large uncertainties, this 
project would be favorably completed by another study, using a different approach and aiming at increasing the result 
accuracies. The combination of the SVD and Fourier analysis could be an interesting track. Indeed, the SVD seems to 
show interesting capacities to extract major information before applying the Fourier transform to the signal. 
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