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Abstract  

It is well known that during tensile testing, a part of the mechanical work done on the specimen is 
transformed into heat energy. The rate of rise and maximum temperature attained depends on the nature 
of material, its deformation behaviour and test conditions. This paper highlights  the application of 
thermography  for characterising various stages of tensile deformation in AISI type 316 stainless steel and 
predicting the zone of failure in advance.  Multi layered perceptron based ANN was used for predicting the 
temperature based on the experimental data.  Temperature prediction especially in work hardening region 
could be done with errors less than 1.0%.   

1.  Introduction  

It is well known that when a metal is plastically deformed and subjected to failure during the tensile test, 
most of the absorbed strain energy is converted into heat.  Consequently, the temperature of the metal 
increases. The ultimate temperature attained by the specimen and the rate of temperature change 
including the thermal gradients developed,  are  directly related to the material properties, physical 
conditions of the test and deformation behaviour of the material. The measurement of this rise in 
temperature due to deformation induced heating can give valuable information about the nature and 
severity of the deformation and also help in gaining a better insight of the complex linkages between 
mechanisms of deformation with material properties.  Literature study reveals that though plastic 
instabilities in materials due to tensile deformation has been studied through modelling and a number of 
theories have been proposed [38-41], the idea of using temperature as a sensitive indicator did not catch 
the fancy of many researchers. 
 
To study deformation induced heating, a means of measuring temperature rapidly and accurately is 
required.  In the past, both contact and non-contact techniques have been used for measuring the 
temperature.  However, such measurements gave only point information and errors associated with these 
measurements were found to be large (± 1 K).   The concept of utilizing an infrared sensor to detect and 
measure the surface temperature variations started only in the late 70s.  Some of the early researchers 
include Wilburn [1], Huang et al.[2],  Sachdev et al.[3] etc.  However all these focussed on carbon steel.  
No detailed investigations have been reported on the use of IR imaging for studying tensile deformation 
especially on AISI type 316 stainless steels except by the authors [4].  

2.  Experimental Approach 

Flat tensile specimens with gauge dimensions 50x20x4 mm were prepared from plates of nuclear grade 
AISI type 316 stainless steel, solution annealed at a temperature of 1323 K for one hour and water 
quenched. The specimens are prepared as per the guidelines given in ASTM E 8-95a Standard Test 
Method for Tension Testing of Metallic Materials. The specimens used for the experimentation were  
qualified using appropriate NDE techniques to ensure that they meet the dimensional and surface finish 
requirements.  To ensure that they were also free from defects, all the specimens were subjected to high 
sensitivity radiography.  Tensile testing of all the specimens was carried out in a tensile testing machine at 
ambient temperature with cross head speeds of 1 mm/min, 2mm/min, 5 mm/min, 10 mm/min, 20 mm/min 
and 50 mm/min.  This represents a broad range spanning from a low strain rate to a comparatively fast 
one.  Thermal images of the specimens during tensile deformation were captured using a focal plane 
array based system.  To overcome the effects of emissivity variations, a thin coat of black paint was 
applied to the gage length of the specimens.   
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3.0 Results and Discussions 
3.1  Visualisng stages of tensile deformation through IR Imaging 

 
A series of systematic experiments was performed to characterise the process of tensile deformation in 
AISI type 316 stainless steel.  The different manifestations of thermal pattern accompanying the plastic 
deformation of AISI type 316 SS is presented in Fig. 1.  This gives an overview of the thermal dissipation 
as a function of nominal strain for a strain rate of 3.3 x 10-4 s-1.  The progressive rise in temperature along 
the gauge length with increasing strain levels can be clearly visualized from the thermal patterns.   
 
 
 
 

 
 

(a)                                                       (b)                        (c) 
 

 
(d)                                                       (e)                                         (f) 

 
 

Fig. 1. Thermal images for typical nominal strain at strain rate of 3.3X 10
-4

s
-1 

. 

 
 
For quick visualisation of the phenomenon, a graphical plot of maximum temperature observed in the 
gauge length region versus strain for a strain rate of 3.3 x 10-4 s-1 is presented in Fig. 3.3.  The maximum 
temperature is obtained by thresholding the region using area measurement function, profiling the region 
and using spot temperature measurement to locate the exact point and obtain the maximum temperature.  
The curve in general  can be divided into three  distinct regions namely :    
 
 
Region I   - start of the test to just before yield point. 
 
Region II   - from yield point to Ultimate Tensile Strength (UTS) and 
 
Region III  - from UTS to fracture. 
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Fig. 2.  Variation of nominal strain with temperature for strain rate of 3.3 x 10
-4

 s
-1

. 

 
 
The slight drop in the temperature in the elastic region is attributed to the thermoelastic effect. The initial 
drop of temperature in the elastic region is followed by a sudden increase in temperature as plastic 
deformation begins.  This inversion of temperature indicates the transition from the elastic to the plastic 
behaviour of the material. With increasing strain levels, the temperature continues to increase.  Region II 
is the work hardening region characterised by a rise in temperature till UTS point.   
 
Work done during plastic deformation is a thermodynamically irreversible process.  A major portion of the 
total mechanical work done during plastic flow is dissipated as heat which raises the temperature of the 
material while being deformed.  A small but significant percentage of energy, however, is stored in the 
metal by the formation of lattice defects, mainly dislocations.  It has been observed that the amount of 
heat evolved as a percentage of plastic work expended in the tensile deformation is about 86.5% for steel, 
90.5-92 % for copper, 92-93% for polycrystalline aluminium and 95-95.5% for aluminium single crystal 
[102].  Heat generated at each point of the specimen is proportional to the energy dissipated (Eh) by the 
specimen at that point and thus proportional to the level of stress at that point.  As the specimen is 
deformed plastically, work hardening takes place.  That is, the stress required to cause additional strain in 
this region increases with plastic strain.  As a result, the heat generated at each point increases with 
plastic strain.  The main mechanism of heat loss during tensile deformation can be considered to be due 
to conduction.  Convection losses can be considered to be minimum due to the small temperature 
difference between the surrounding and the specimen.  Thus, with increasing strain levels, the rate of 
generation of heat exceeds the rate of conduction.  This produces a perceptible rise in the temperature of 
the specimen which is observed in the IR image.   
 
In general, strain hardening increases the specimen’s load carrying capacity. However, at UTS the effect 
of strain hardening is overcome by the reduction in cross-sectional area of the specimen, resulting in the 
decrease in its load carrying capacity.  Consequently, localized deformation results. This condition is seen 
as necking of the tensile specimen.  The necking of the specimen manifests as a maximum in the 
engineering stress-strain curve.  In the temperature vs strain curve, a large rise in temperature is 
observed during necking which results in the change in the slope of the strain vs. temperature curve (fig. 
2).  The reason for this sudden rise in the temperature can be attributed to the mechanism of fracture in 
ductile materials. 
 
The temperatures were profiled along the gauge length of the specimen. Both spot and line profiles were 
used to determine the temperature variation and the maximum temperature attained along the gauge 
length of the specimen.  Table-1 gives the maximum temperature observed in the gauge region for 
nominal strains of 7.3 %, 15.4%, 27%,  34.2%, 47.7 % and 56.5% as a function of strain rate.  It can be 
seen from Table-1 that the maximum temperature attained at the centre of the specimen is function of 
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strain rate being greater for a strain rate of 1.7 x 10-2 s-1 than 3.33 x 10-4 s-1.  The rise in temperature of 
the specimen with the strain rate for the same values of strain  can be explained as follows. 
 

Table 1.  Variation of temperature along gauge length for different strains and strain rates 
 

Nominal 
Strain (%) 
          
         Strain  
          rate                 

Temperature in gauge length (K) 
3.3 x 10-4 

s-1 
6.6 x 10-4 

s-1 
1.7 x 10-3 

s-1 
3.3 x 10-3 

s-1 
6.6 x 10-3 

s-1 
1.7x10-2 

s-1 

7.3 299.9 302.6 300.3 302.7 301.3 303.9 
15.4 300.1 302.5 301.9 303.0 302.4 304.3 
27.0 301.2 302.9 302.4 304.6 304.9 308.6 
34.2 300.8 303.1 304.6 306.5 307.2 309.4 
47.7 301.4 304.0 306.7 310.8 314.9 320.0 
56.5 301.7 304.5 310.0 320.7 348.4 365.5 

 
As the specimen is deformed plastically, work hardening takes place.   It is well known that plastic 
deformation is due to the movement of  large number of dislocations.   The rate of plastic deformation i.e., 
the strain rate έ is proportional to the Boltzmann’s probability factor: 

 
έ  exp (-Q/kpfT)                                      (1) 

 
where Q is the activation energy for dislocation motion.  Q arises from the activation barrier that a 
dislocation faces in moving from one minimum energy position to next.  The above equation indicates that 
a dislocation can change its position solely due to thermal fluctuations even without the application of an 
external stress.  Such motion would be random in nature  where a dislocation would have an equal 
probability of moving to the next minimum energy position in any direction. Such motions however would 
not result in plastic deformation.  A certain threshold stress is thus necessary for dislocations to move in a 
specified direction.  If  PN is the stress required to move a dislocation in the absence of thermal energy (at 
0 K) and app is the applied stress at 0 K,  then  
 
     Q = ( PN  - app)                                        (2) 
 
where  is the activation volume.   Substituting this in equation (3.9) we have  
 
 

έ   exp   - [PN -  app ]                                         (3) 
      kpfT  
 
 
For a given material,  and  PN  are constant .  It can thus be observed from this equation that when an 
experiment is performed at constant ambient temperature (299 K in the present case), the strain rate is 
proportional to the applied stress.  The higher the strain rate, the higher the stress.  The heat generated at 
each point on the specimen is proportional to the energy dissipated by the specimen at that point and thus 
proportional to the level of stress at the point.  Hence for the same nominal strain, higher strain rate 
produces a higher energy thus resulting in higher temperature.   
 
An additional reason for the higher temperature at a higher strain rate is the mechanism of thermal 
conduction.  At lower strain rates, heat is generated rather slowly by the deformation process and is 
dissipated to the surroundings quickly resulting in lower rise in the temperature.  But with increasing strain 
rate, the deformation process tends towards an adiabatic one, i.e., the rate at which the specimen is 
deformed increases than the rate at which heat is conducted to the surroundings, causing the temperature 
to rise to a higher value as compared to the temperature attained for the same strain levels but at a lower 
strain rate value. 
 
3.2 Early Prediction of the Zone of Failure through IR imaging [5] 

 
Figs. 3. (a)-(b) show typical plots of the variation of temperature on the specimen along its gauge length 
as a function of nominal strain for two different strain rates.   The point of maximum temperature was 
determined through thermal profiling for each nominal strain and the graph has been plotted for 
temperatures on either side of the maximum. 

http://dx.doi.org/10.21611/qirt.2014.165



 

-40 -30 -20 -10 0 10 20 30 40 50
298
300
302
304
306
308
310
312
314
316
318
320
322
324
326
328

57.17%

53.02%

46.98%
34.05%
15.95%
7.32%

TE
M

PE
RA

TU
RE

 (K
)

Distance from the location of maximum temperature (mm)
 

 
  ( a ) Strain rate of 6.7 x 10

-3
s

-1 

 

 

 

 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

 
 
 
 

(b) Strain rate of 1.7 x 10
-2

s
-1 

 
Fig. 3.  Temperature profile along gauge length for  different strain levels 

 
 
The data in Figs.  3. (a)-(b) have been fitted using the Lorentz equation  
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The results can be correlated with the mechanism of fracture in ductile metals.   
 
The onset of necking is clearly revealed in thermography by the preferential heating that occurs with the 
temperature being maximum in the region of highest stress concentration and falling of drastically on 
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either side of the centre.  This is evident in Figs 3. (a)-(b) as well.  Thus the zone of failure becomes very 
prominent, and it can be thus concluded that the process of necking elongation and the fracture of 
remaining ligaments is unambiguously revealed by thermography.   
 
In earlier works on study of deformation induced heating, Ayres [42], Raghavan and Wagoner [43], had 
used thermocouples welded on to the specimen surface at suitable distances to measure temperature.  
However, such measurements gave only point information. Moreover, the errors associated with these 
measurements were found to be quite high (> + 1 K) since the exact point at which the maximum 
temperature occurs were not known.  The present experiments clearly indicate that IR imaging provides a 
full-field thermal image obtained in a non-contact way from which accurate surface temperature 
measurements can be made.  The full-field  temperature image makes it possible to locate the point and 
time of strain localization during  a dynamic test.  This clearly proves that the technique of infrared 
imaging can identify and delineate the zone of crack growth and failure during tensile deformation. 
 
4.0  Application of MLP- ANN for temperature prediction 
 

A novel and first of its kind approach is the use of  MLP-ANN for predicting the temperature and strain rate 
during tensile deformation of nuclear grade AISI type 316 SS.  The experimental data that has been 
generated was first used for training the neural networks and then applied for prediction purposes.   
 
While a number of network architectures such as Kohenon, Binary Hopfield etc., are available, the 
multilayered perceptron (MLP) was chosen since this is one of the most versatile artificial neural networks 
and is popular for data classification and prediction applications.  The basic architecture of the MLP neural 
network is shown in Fig. 4.   
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The first layer, known as the input layer, consists of a number of input nodes. In general, there will be one 
such node for each variable used to model the output. In this case, it corresponds to the IR parameter 
(feature) used for classification/ prediction. Let M represent the maximum number of variables 
(components per input vector) so that there would be i = 1…M nodes in the input layer. Each input vector 
Xi , then has k = 1...m values associated with it. The network contains one or more hidden layers and each 
node in the hidden layer is connected to every node in the previous layer through a set of weighted links. 
Let j represent the number of nodes in a hidden layer with j=1...P such hidden layer nodes. Then there 
would be M x P such weights W ij, connecting the input node to the hidden layer nodes. MLPs can have 
more than one hidden layer also. Following the hidden layers, is the output layer, which may contain a 
node for every variable that is to be modelled. Again, weights are used to connect each output node to 
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Fig. 4.   Basic Architecture of Multilayered Perceptron based Artificial Neural Network 
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every node in the previous hidden layer. With N output nodes and one hidden layer, there will be N x P 
such weights wjf , connecting the hidden layer nodes to the output nodes. 
 
The MLP can be viewed as a network whose weights are used to map a series of input patterns (or 
feature vectors) into the required output. Final values of all the link weights are obtained by a training 
process. The training is carried out by passing a set of inputs (in our case of IR study, these could be 
nominal strain, temperature, strain rate, cross head speed and stress.) through the MLP and adjusting the 
weights to minimize the error between the result the network gives for output, Yp

fk and the actual output 
value, Yfk. This is repeated for all the input combinations and the final weights are those that minimize the 
average of all n squared errors. Once the weights have been set, the network is able to produce 
predictions for the output using input values not used during the training process. 
 
Fig. 5 shows the training process in more detail by illustrating the inputs between four input nodes (i = 1 to 
4) and a single node (node j) in the hidden layer.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A set of input values X1k to X4k (where X1k to X4k might be temperature / nominal strain/ strain rate/stress 
obtained during tensile deformation (for example)) is presented to the network and a weighted sum of 
these values is formed using the relevant weights (w1j to w4j). This weighted sum Ujk is then passed 
through a non- linear activation function f(Ujk) to produce an output Yjk in the range 0 to 1. It is because of 
this activation function that the MLP is ideal for modelling non-linear relationships such as that between 
temperature generated and strain or strain rate. This output is then sent to a node in the next hidden layer 
or to an output node where a similar weighting and normalization procedure takes place. The result will be 
an output prediction in the range 0 to 1. To allow comparison to be made, the output data must be 
rescaled in this range before analysis. It is also advisable to rescale all inputs into a similar range so that 
the weighted sums described above are often calculated on the scaled inputs.   For the following neural 
network prediction study, the DESKPACK Software System (DSS) was used. The parameters used in this 
study are (a) stress, (b) nominal strain, (c) maximum temperature, (d) strain rate corresponding to cross 
head velocity of 1 mm/min, 2 mm/min, 5 mm/min, 10 mm/min and 50 mm/min.  The MLP-ANN is trained to 
predict  temperature, and strain rate while feeding the other parameters as inputs.  In this paper, we focus 
only on the temperature prediction.  
 
The temperature is predicted with the input parameters being stress, nominal strain and strain rate.  A 
total of 204 data vectors were used. The data vectors, were having wide ranging values. The values of 
temperature ranged from 273 K -373 K,  In order to use these values in the MLP-ANN effectively, these 
were mapped onto a scale between 0.1 and 0.9, so as to increase the efficiency of the MLP-ANN. While 

 

Fig. 5.  Feed forward procedure through a part of the network 
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mapping these values, the scaling factor was also saved, so that a reverse mapping could be done later 
to compare the original (strain rate or temperature) values with the predicted values. The 204 forward-
mapped data vectors were divided into two sets (set1 and set2), each consisting of 102 vectors, using the 
DSS. After obtaining the two sets of input vectors viz., set1 and set2, in trial 1, the first set (set1) is used 
for training the MLP-ANN and the second set (set2) is used for testing (predicting). In trial 2, the second 
set (set2) is used for training the MLP-ANN and the first set (set1) is used for testing (predicting). 
 
During the temperature prediction study, for both trial 1 and trial 2, the MLP-ANN architecture used is 4-3-
2-1, i.e., the MLP-ANN had 4 nodes in the input layer, 3 nodes and 2 nodes in the hidden layer and one 
node in the output layer. This architecture achieved the minimum pattern error in this study. The 
architectural details of this MLP-ANN is given in Table 2.   
 

Table  2.  Architectural Details of MLP – ANN 
 

Input Nodes 4 
Hidden Layer 2 
Output Node 1 
Nodes in Hidden Layer 1  3 
Nodes in Hidden Layer 2   
Nodes in Hidden Layer 3  

2 
0 

Nodes in Hidden Layer 4  0 
Nodes in Hidden Layer 5  0 
Nodes in Hidden Layer 6  0 
D.C.Bias Removal No 
Normalisation  No 
Total Number of Files  102 
Record Length of Each Signal  4 
Mode (Train / Test)  Train 
Learning Rate  0.700000 (Decreases with Epoch) 
Completed Max Epochs. 75,000 

Final Cumulative Pattern Error  0.049608 

 
 
A final pattern error of 0.049608 was achieved as indicated in Table 2.  It took the MLP-ANN, 75000 
epochs to achieve this error reduction.  
 
Once the MLP-ANN is trained with set1 and the lowest pattern error is achieved, the second set (set2), 
was used as a testing set and the corresponding temperature values for a strain rate of 1.7 x 10-4 s-1  were 
predicted. Fig. 6 is the plot of the experimental and theoretical predictions with respect to nominal strain 
for a strain rate of 1.7 x 10-4s-1.  The temperature values obtained from MLP-ANN matched with the 
experimentally observed values.  The overall error was less than 1%.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 6.  Plot of actual and predicted temperatures for a strain rate of 1.7 x 10
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4.2.1 Error in Temperature Prediction 

A statistical analysis of the actual and predicted temperature values was also carried out.  If T  is the 
mean value of the temperature, then the standard deviation (SD) is given by :      
 

  





n

i i TT
n

VarSD
1

2

1

1
                        ---------- (4.1) 

 
 
where Var is the variance and n , the sample size. The standard error of the mean ( SEM ) is given by  

n

SD
SEM            ----------- (4.2) 

 
The result of this analysis is given in Table 3 for the typical case of strain rate of 1.7 x 10-4 s-1.   

 
 

Table 3.   Statistical Analysis of Actual and Predicted Temperatures for a Strain Rate– 1.7 x 10
-4

 s
-1 

 

Actual Temperature 
(K) 

Predicted 
Temperature(K) 

     Mean  
      (K) 

Standard 
Deviation (K) Error (%) 

302.9699 301.6268 302.2983 0.9497 0.67154 
302.3701 303.8598 303.1149 1.05339 0.74486 
302.5701 303.3536 302.9619 0.554 0.39174 
302.6697 303.1763 302.923 0.35824 0.25331 
302.7698 303.0343 302.902 0.18703 0.13225 
302.8698 303.0169 302.9434 0.10401 0.07355 
302.9699 303.1046 303.0372 0.09529 0.06738 
303.4696 303.3623 303.416 0.07592 0.05368 
303.6697 303.5724 303.6211 0.06882 0.04866 
303.9699 303.8127 303.8913 0.11111 0.07857 
304.0699 304.159 304.1145 0.06299 0.04454 
304.5697 304.4194 304.4945 0.10628 0.07515 
304.8698 304.8538 304.8618 0.01131 0.008 
305.1695 305.3513 305.2604 0.12857 0.09091 
305.6697 305.7748 305.7222 0.0743 0.05254 
306.0694 306.3303 306.1999 0.18446 0.13043 
307.4696 308.2567 307.8632 0.55657 0.39355 
308.3691 309.6126 308.9909 0.87929 0.62175 
308.8694 310.085 309.4772 0.85959 0.60782 
309.6693 310.8694 310.2693 0.84858 0.60004 
314.5688 316.5464 315.5576 1.39837 0.9888 
317.2687 317.7862 317.5274 0.36596 0.25877 

 
It can be observed from figure 6 and also from Table 3 that the error between the actual and predicted 
temperatures is high in the initial elastic region, being of the order of 0.6 – 0.7 %, and towards the end 
after the ultimate tensile strength (0.6 – 0.98%) while in the intermediate regions there is excellent 
correlation, with the error being less than 0.1 %.  This can be explained based on figure 2. 
 
Three distinct regions can be visualised in figure 2 - the first being from start of the test to just before yield 
point (nominal strain of about 8-10%), the second region from yield point to UTS (nominal strain of about 
10 % - 60%)  and the third region from UTS to fracture.  The first region indicates an initial rise followed by 
a small drop in the temperature attributed to the thermoelastic effect.  The second region is the region of 
work hardening in which the temperature rises gradually with strain.  In the third region immediately after 
UTS, there is a sudden and drastic rise in the temperature.  The ANN is modelled on the overall basis of 
increasing values of temperature with increasing stress and strain rates using a sigmoidal function.   Thus, 
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we have excellent correlation in the work hardening region where the temperature increases gradually 
with strain, while in regions I and III, due to the non-linear variation of temperature with nominal strain, the 
error is quite high.  Hence the ANN model  predicts a temperature value, which is greater by about 0.2 K 
to 0.6 K compared to the actual values.  However, it can be observed from Table 2 that the error in 
prediction of temperature values does not exceed 0.98, in general, with excellent correlation in the work 
hardening region (errors < 0.1 %).       
 
5.  Conclusion 

 
The results presented in this thesis represent a successful experimental attempt to characterise the 
thermal signature generated during the entire process of tensile deformation of AISI type 316 SS upto 
fracture as a function of nominal strain and strain rate.   All the stages of tensile deformation i.e., “micro-
yielding, yielding, progressive plastic deformation and necking elongation and fracture” could be identified 
and characterized by IR imaging.  The results also clearly reveal that IR imaging (thermography/thermal 
imaging) is quite sensitive and complements mechanical testing by providing  online visualisation and with 
the full-field thermal image from which accurate surface temperature measurements, without contacting 
the specimen, are possible. The application of full-field temperature imaging makes it possible to locate 
the point and time of strain localization during a tensile test. Profiling of the temperature along the gage 
length clearly proves that the technique of infrared imaging can identify and delineate, well in advance, the 
zone of failure during tensile deformation.  This result could also be utilized in practical situations to 
identify possible highly stressed zones in component before component fails. 
 
A novel approach is the use of  MLP-ANN for predicting the temperature and strain rate during tensile 
deformation of nuclear grade AISI type 316 SS.  The experimental data that have been generated were 
first used for training the neural networks and then for prediction purposes.  In the case of temperature 
prediction, the overall error is less than 1.0 %.     The percentage errors can be further minimised by  
 
1. Having more number of samples for training the network 
 
2. Training the network to predict the temperature zone / region wise – before yield, work hardening 

phase and beyond UTS.  This should improve the accuracy of prediction considerably.  
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