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Abstract
This paper presents a novel approach based on the idea of 3D scene reconstruction with use of a system consisting of a
single thermographic camera integrated with a single visual camera. Each camera acquires a sequence of images of the
same object while the system is being moved. Using two separate Extended Kalman Filters, displacements of the visual
and thermal camera relative to initial position can be estimated up to rotation and direction. A method of recovering
metric scale by means of image coordinates of feature points tracked independently in two sequences is introduced. An
example of thermal and visual image fusion by means of 3D data obtained by the proposed method is presented.

1. Introduction 

Thermal image 3D reconstruction systems find increasing variety of applications. They enable to estimate more
accurately the temperature distribution on the object being examined (by taking into account the directional emissivity of
the material) [21], or to locate more accurately the source of infrared radiation [2,3]. Existing systems consist of visual
stereoscopic set coupled with thermographic camera. In case of such systems 3D coordinates of an object reconstructed
by means of the stereoscopic set are remapped onto the image from thermal camera [1,3,13,14,16,17]. On the other
hand some authors propose another approach i.e. stereoscopic set consisting of two  thermographic cameras [12,14].
3D reconstruction is also possible by means of a system comprising a single camera provided that  camera position
relative to the reconstructed object is changed at the time of image capture. However, in this case, the three-dimensional
reconstruction can only be made up to an unknown scaling factor [2,5,6,10,11,15,20,22].

This paper presents a novel approach based on the idea of 3D scene reconstruction introduced earlier by the
author [15]. The approach so far presented has been based on a system consisting of a single thermographic camera
integrated  with  a  single  visual  camera.  Each  camera  acquires  two  images  of the same object from  two  different
viewpoints. The drawback of presented method is that in order to recover metric dimension of the observed scene it
either requires additional metric information about the observed scene, or additional 3D reconstruction by means of both
visual and thermal image [15]. The system presented in this paper includes an improvement that addresses this issue.
An example of thermal and visual image fusion by means of 3D data obtained by the proposed method is presented.

2. Description of the system

The system proposed in this work consists of integrated pair of cameras: thermographic and visual (figure 1).
The system combines the two concepts of 3D reconstruction: (1) the concept of reconstruction with the help of a moving
camera, and (2) the concept of reconstruction using the traditional stereovision system replaced by a pair of cameras:
visual and thermographic. In addition to 3D scene reconstruction the system enables to merge thermograms with visual
images. It is assumed that the integrated set of two cameras is moving and thus the reconstruction of the observed
scene can be made independently for two image sequences: visual and thermographic. Basing on the image data from
visual  and thermographic cameras the motion of  two cameras can by estimated up to the rotation and direction of
translation [10].  As it  has been proven below,  in a such case it  is possible to calculate the length of  translation in
reference to the known and constant distance between the cameras. This means that knowing the constant distance
between two integrated cameras, one can estimate the length of the path traveled by the system, which in turn means
the possibility to merge the visual and thermal images.

During initialization, the system is set in initial position. From images acquired from respective cameras in initial
position feature points are selected. Feature points are points that are unique e.g. corners and therefore can be tracked
in the sequence of images [9,18].

Using two separate Extended Kalman Filters (EKFs) [5,6,10], displacements of the visual and thermal camera
relative to initial position can be estimated up to rotation and translation with given arbitrary scale. Spatial coordinates of
tracked feature points are also estimated using the same EKFs. At this stage, the scale of the reconstructed points
remains  unknown,  i.e.  depth  components  of  tracked feature  points  and  length  of  the  displacement  vectors  of  two

cameras are calculated relative to the fixed depth component of two arbitrarily selected feature points: ZV1(t) = Zinit (for

visual camera) ZT1(t) = Zinit (for thermographic camera). These reference feature points are excluded from respective
state vectors to obtain observability of the reconstruction system [5,6,10,19].

http://dx.doi.org/10.21611/qirt.2014.110



Fig. 1. 3D reconstruction by means of moving set of two cameras: thermographic coupled with visual

The translations with given arbitrary scales and matrices of rotation of both cameras estimated by means of
EKF, together with the extrinsic parameters describing relative position of the cameras, enable to calculate the scales of
the translation vectors  and therefore their  metric lengths.  Finally,  using estimated scales,  the metric  coordinates of
feature points tracked in the images from thermal and visual cameras can be determined.

It is worth to emphasize that to estimate motion parameters of the camera being displaced apart of EKF, a
method using an essential matrix can be used [10]. But as it is shown below, only motion parameters of the cameras
estimated by means of EKFs were suitable for scale coefficients recovery.

3. Implementation details

In order to estimate the cameras displacements and positions of feature points being tracked independently in
visual and thermal image sequences, two extended Kalman filters were implemented based on description provided by

Chiuso et al [5,6,10]. Because of relation between 3D coordinates Xi=[Xi, Yi, Zi]T of a given point Pi and respective

normalized images coordinates xi=[xi, yi]T is as follows:

[ xiy i ]=[
X i
Z i
Y i
Z i

] , (1)

therefore  it  can  be  assumed  that  the  3D  position  of  point  Pi can  be  described  by  normalized  image  coordinate

xi=[xi, yi]T and the depth component Zi of 3D coordinate [10]. In order to obtain normalized coordinate of a feature point
being tracked in the image sequence provided by the camera, the camera must be calibrated i.e. its intrinsic parameters

must be estimated [7,10]. Taking into account the issues mentioned above two state vectors χV(t), χT(t) at time step t
for visual camera and thermal camera respectively can be defined as follows:

χV (t )=[xV 1T ( t ),… ,xVN
T ( t ) ,ZV1 (t ) ,… ,ZVN (t ) ,T V

T (t ),ΦV
T ( t ) ,νV

T (t ) ,ωV
T ( t )]

T
, (2)

χT (t )=[xT 1T (t ),… ,xTM
T ( t ) ,ZT1 (t ) ,…,ZTM (t ) ,T T

T ( t ),ΦT
T ( t ) ,νT

T ( t ),ωT
T ( t )]

T
, (3)

where  N,  M are numbers of feature points being tracked independently in image sequences provided by visual and

thermal  camera  respectively;  xVi(t)=[xVi(t), yVi(t)]T,  xTi(t)=[xTi(t), yTi(t)]T  are  normalized  image coordinates  of
feature points in images provided by visual camera and thermal camera respectively being in the initial position, i.e. at

time step  t=0;  ZVi(t),  ZTi(t) are depth components of 3D coordinates of feature points tracked in visual and thermal

sequence  respectively  in  reference  to  initial  position  of  respective  camera.  TV(t)=[TVx(t),  TVy(t),  TVz(t)]T,

ΦV(t)=[ΦVx(t),  ΦVy(t),  ΦVz(t)]T are  motion  parameters  of  visual  camera  i.e.  translation  and  rotation  vectors

describing current position (at time step t) of the camera against the initial position (at time step t=0). Similarly TT(t),

ΦT(t) are motion parameters of  thermal  camera.  νV(t),  ωV(t) and  νT(t),  ωT(t) are vectors  of  linear and angular

velocities by means of which a relation between two adjacent positions (e.g. at time steps t and t-1) of the given camera

can be expressed. Therefore a relation between 3D coordinates  X'Vi(t),X'Ti(t) in reference frame associated with
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camera being in time step  t and 3D coordinates  XVi(t)=X'Vi(0),  XTi(t)=X'Ti(0) in reference frame associated with
camera in initial position can be expressed as follows for visual and thermal camera respectively:

X'Vi(t)=RVi(t)XVi(t)+TVi(t), (4)

X'Ti(t)=RTi(t)XTi(t)+TTi(t), (5)
where  RVi(t),  RTi(t) are rotation matrices corresponding to rotation vectors  ΦVi(t),  ΦTi(t) by means of  Rodrigues'
formula.

The measurement  (observation)  vectors  for  each  camera  at  given  time step  consist  of  normalized  image
coordinates of feature points being tracked in images provided by cameras being in corresponding positions:

ψV (t )=[x'V1T ( t ),…,x'VN
T ( t )]

T
(6)

ψT (t )=[x'T1T (t ) ,…,x'TN
T (t )]

T
(7)

Summing up there are two independent 3D reconstruction systems for each camera (visual and thermal). Each
system is modeled by a pair of state and observation vectors (Eqs. (2) and (6) or Eqs. (3) and (7)). It can be proven
[5,6,10] that the system modeled with use of so defined state vector and observation vector is not observable which
means that state vector of the system can not be determined from the observation vector of the system. It also has been
proven [5,6,10] that the analyzed system will  be observable if three image coordinates and one depth component of
arbitrary chosen feature points are excluded from the state vector. Thus the state vectors of the two observable systems
for both cameras can be defined as follows:

χV (t )=[xV 4T (t ) ,…,xVN
T (t ) ,ZV2 (t ),… ,ZVN (t ),T V

T ( t ) ,ΦV
T (t ),νV

T (t ),ωV
T ( t ) ]

T
, (8)

χT (t )=[xT 4T (t ),…,xTM
T ( t ) ,ZT2 (t ) ,…,ZTM (t ),T T

T (t ),ΦT
T (t ) ,νT

T (t ) ,ωT
T (t )]

T
, (9)

where it has been assumed that indexes of excluded feature points equal 1,2, and 3.
Using state and observation vectors defined for both cameras according to Eqs. (6) to (9) along with proper

transition/observation models [5,6,10] and extended Kalman filter predict/update equations [5,6.10] the 3D positions of
feature points tracked by each camera and their motion parameters can be determined up to unknown scale. The initial
state vectors for each camera were chosen as follows:

χV (0 )=[xV 4T (0) ,… ,xVN
T (0 ),Z init1 ,… ,Zinit1 ,0,0,0,0]

T
, (10)

χT (0 )=[xT 4T (0) ,…,xTN
T (0) ,Zinit1v ,…,Z init1 ,0,0,0,0]

T
, (11)

where initial image coordinates are the image coordinates of feature points detected in images from cameras being in

position at  initial  time step  t=0.  The initial  values of  depth components equal  the arbitrary chosen value of  depth

components ZV1(t)=Zinit1, ZT1(t)=Zinit1 excluded from the respective state vectors in order to obtain observability of the
two systems. In practice that means that the depth components of feature points and the length of current displacement

of each camera are estimated relative to arbitrary chosen reference depth Zinit1. In order to merge together estimated 3D
coordinates of feature points tracked in the two image sequences (visual and thermal) a true scale has to be calculated.

A novel method of true 3D scene scale recovery with use of motion parameters of the two integrated cameras is
introduced below. The system of the two cameras is presumed to be calibrated, i.e. its intrinsic (optical) parameters and
extrinsic parameters (relative positions of the cameras) are known [7,10,16]. The system is calibrated and therefore at a

time step t a relation between 3D coordinates X'V(t) in reference frame of the visual camera and 3D coordinates X'T(t)
in reference frame of the thermal camera can be simplified to a so called canonical form [7]:

X'V(t)=X'T(t)+TVT, (12)

where  TVT is  a  translation  vector  in  a  canonical  stereoscopic  [7]  set  of  visual  and  thermal  camera,

TVT=[||TVT||,0,0]T.  A relation between 3D coordinates  X'V(0) in reference frame of  visual  camera being in initial

position (at time step t=0) and 3D coordinates X'V(t) in reference frame of the same camera being displaced at time

step t is as follows:
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X'V(0)=RV(t)X'V(t) + αV(t)TV(Z1)(t), (13)

where RV(t), TVZ1(t) are motion parameters of visual camera determined with use of EKF; translation vector TVZ1(t) is

estimated in relation to arbitrary chosen reference depth component ZV1=Zinit1. αV(t) is a scale factor relating estimated

translation  vector  TV(Z1)(t) to  the  vector  TV(t) associated  with  unknown  true  dimensions  of  the  scene  being

reconstructed. As long as the reference feature point with depth ZV1 is the same, the scale factor remains unchanged for

each time step during displacement of the system i.e.: αV(t)=const.
Similar relation can be found for thermal camera:

X'T(0)=RT(t)X'T(t) + αT(t)TT(Z1)(t), (14)

Substituting  Eq.  (12)  into  Eq.  (13)  a  relation  between  motion  parameters  of  thermal  camera  and  motion
parameters of visual camera can be found as:

RV(t)=RT(t), (15)

αT(t)TT(Z1)(t)=RV(t)TVT ̶ TVT + αV(t)TV(Z1)(t), (16)

Eq. (16) can be transformed into:

[T T (Z 1)
(t ) −T

V (Z 1)
(t ) ][α T (t )

αV (t ) ]= ‖T VT ‖[
rV 11 ( t )−1
rV 21 (t )

rV 31 (t )
] , (17)

where rV11(t), rV21(t), rV31(t) are elements of rotation matrix RV(t). Eq. (17) is in fact a set of three equations with two

unknowns αV(t), αT(t) and can be solved using least square method. Eq (17) shows that it is possible to recover true
scale of the scene using integrated set of two cameras without finding correspondence between feature points detected
in pair of images providing that the set is calibrated i.e. relative positions of the cameras is known including the distance

||TVT||.  This feature is especially important in case of  integrated set of  visual  and thermal cameras, as establishing
correspondences between pairs of feature points detected in visual image and thermal image is very difficult [15].

Fig. 2. Displacement of integrated set of two cameras with nonzero rotation and different directions of
translation vectors

Figure 2 shows graphical interpretation of Eq. (17). Two positions of the integrated set of two cameras are

illustrated with use of reference frames' axis associated with the cameras: XV(0), YV(0), ZV(0) – visual camera at time

step t=0,  XT(0),  YT(0),  ZT(0) – thermal camera at time step t=0,  XV(t),  YV(t),  ZV(t) – displaced visual camera at

time step t>0, XT(t), YT(t), ZT(t) – displaced thermal camera at time step t>0. 

http://dx.doi.org/10.21611/qirt.2014.110



Eq. (17) has a single nonzero solution if the directions tV(t), tT(t) of translation vectors TV(Z1)(t), TT(Z1)(t) are

different and there is nonzero rotation:  RV(t)=RT(t)≠1. If the translation vectors are parallel then Eq. (17) has infinite
number of solutions.

4. Results

A testbed system consisting of two cameras (one visual, one thermographic) has been built  (figure 3). The
thermal camera used in the system was InfraTec VarioCam, of  640x480 resolution. The visual  camera used in the
system was PointGrey Fly, of resolution 1024x768 resolution. An important part of the system is a software application
designed with use of OpenCV library, in order to perform calibration of the set of cameras, capture and record image
sequences and to estimate motion parameters and 3D positions of feature points being tracked independently in image
sequences by means of extended Kalman filter and essential matrix.

Fig. 3. A test system consisting of thermal and visual cameras

In order to verify the proposed method a test  scene hes been built  comprising three planes composed of
calibration boards (figure 4). Feature points on two vertical boards are visible both in visual image and thermographic
image due to different emissivity of  dark and bright  squares – bright  squares were covered with  aluminum foil  and
additionally the boards were heated with radiator. On the other hand feature points on horizontal board are only visible in
visual image and therefore this plane can be reconstructed with use of visual data only. But due to true scale recovery by
the proposed method reconstructed points can be reprojected on to the thermal image.

a) b)

Fig. 4. A test scene consisting of three calibration boards. a) thermal image, b) visual image)

Figures 5, 6 show an example of estimation of distance between two points marked on figure 4 as P24, P38.

The distance scale was estimated at each time step tN by means of the proposed method with use of motion parameters
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determined either by essential matrix (figure 5) or extended Kalman filter (figure 6). In either case (EKF or EM) the
results are compared with the results obtained when the scale coefficients were presumed to be known.

Fig. 5. Distance between two points reconstructed with use of essential matrix, αT=0.7 – scale coefficient
known, αT(tN) – scale coefficient calculated at each time step by means of proposed method

Fig. 6. Distance between two points reconstructed with use of extended Kalman filter, αT=0.7 – scale coefficient
known, αT(tN) – scale coefficient calculated at each time step by means of proposed method

Because the real  distance between test  points was  known (60 mm), an average relative error  of  distance
obtained by either method could be calculated and is summed up in tables 1 and 2. The average error was calculated for

such a range of time step numbers  N that extended Kalman filter operation was stable i.e. bereft of large errors that

occurred at the beginning (N<70). 

Table 1. Relative average error of distance between two points reconstructed when scale coefficients were
known,  αT=0.7

Method EM EKF
Δd/d [%] 4.72 3.44

Table 2. Relative average error of distance between two points reconstructed when scale coefficients were
calculated at each time step by means of proposed method

Method EM EKF
Δd/d [%] 80.5 8.39

The results show that when the scale coefficients are known the average relative errors are comparable for EKF
and EM (table 1). On the other hand table 2 shows that the average relative errors are acceptable only when the motion
parameters are obtained with use of EKF (table 2).
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Figure 7 shows an example of application of 3D reconstruction of tracked feature points to merge selected
regions of visual and thermographic image. In figure 4a) regions of visual image which belong to reconstructed planes
S1, S2, S3 are selected. The equations of the planes S2 and S3 were estimated by means of feature points tracked in
thermographic image while the equation of plane S1 was estimated by means of feature points tracked in visual image –
it is worth to emphasize that only feature points visible in visual image were suitable for 3D reconstruction of plane S1.

Figure 4b) shows thermographic image merged with selected regions of visual one.

a) b)

Fig. 7. An example of merging visual image with thermogram. a) Visual image in initial moment (N=0) with
selected regions which are to be merged with thermogram. b) Thermogram captured in moment of time no N=186

merged with selected regions of visual image

5. Conclusions

A new approach of 3D thermal scene reconstruction with use of image sequences from thermographic and
visual camera was presented. The system consists of integrated set of thremographic and visual camera being moved
relative to reconstructed object.

The key element of the system is a new, original method to estimate a displacement of an integrated set of two
cameras. The main advantage of the method is the ability to recover the metric dimensions of the scene being observed
with the use of image coordinates of feature points tracked independently in images being captured by each camera.
Thus the method may also be used in mobile visual system comprising cameras with different parameters or with non-
overlapping fields of view.
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