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Abstract 
 
 Scanning Induction Thermography (SIT) combines both Eddy Current Technique (ECT) and Thermographic Non-
Destructive Techniques (TNDT) [1,2]. This NDT technique has been earlier demonstrated for metallic components for the  
detection of cracks, corrosion, etc. [3-9] Even though Carbon-Fiber Reinforced Plastics (CFRP) has a relatively less electrical 
conductivity compared to metals, it was observed that sufficient heat could be generated using induction heating that can be 
used for nondestructive evaluation using the Induction Thermography technique. Also, measurable temperatures could be 
achieved using relatively less currents, when compared to metals.  In Scanning Induction Thermography (SIT) technique, the 
induction coil moves over the sample at optimal speeds and the temperature developed in the sample due to Joule heating 
effects is captured as a function of time and distance using an IR camera in the form of video images. A new algorithm is 
also presented for the analysis of the video images for improved analysis of the data obtained.  Several CFRP components 
were evaluated for detection of impact damage, location of stiffeners and disbonds using the SIT technique.  
 
1. Introduction 

 
  CFRP composites attract increasing attention for use in load-bearing components particularly in the aerospace 

industries. The major advantage of thermography over other techniques is the potential for the rapid inspection of a large 
area within a short time. SIT is a new hybrid, non-contact and non-destructive technique which uses induced eddy currents to 
heat the material being tested and defect detection is based on the changes of the induced eddy current flows revealed by 
the thermal contrast captured by a Medium Wave Infrared (MWIR) camera. The presence of anomalies, and the 
characteristics of the materials, change the surface temperature and thus can be used for the non-destructive evaluation.  

 
 In this paper a new algorithm for processing the raw data has been developed to account the time delay occurred 

during heating due to the motion of coil from one end to the other end. This algorithm is based on maximum temperature 
attained by each pixel. As this study is conducted on composites, the temperature developed on the sample surface will be 
high compared to the coil temperature which makes this algorithm work perfectly for composites. For metal samples, the 
temperature developed on the surface will be less than the coil temperature which makes the improper functioning of this 
algorithm. There we need to take care of the coil temperature as well.  

 
2. Experiment setup and test procedure 

 
In this experimental work, an impact-damaged (Impact energy= 13 J) CRFP panel (280 x 280 mm2) of 3 mm 

thickness and an aircraft component were investigated.  The setup consists of a solid-state induction heating system that 
converts single-phase line voltage to a 1 kW output over a range of radio frequencies and voltages. This energy is delivered 
to a remote series-resonant circuit-including the coil-where a precisely controlled magnetic field is created around the 
sample. The coil is mounted on a single axis scanner whose speed can be precisely varied. Experiments have been carried 
out in reflection mode, where the infrared camera and the induction coil are on the same side.  Figure 1 shows the 
experiment setup. 
 
3. Impact damage in composite material 
 
3.1. Introduction 
 
 Damage caused by low-velocity impacts is a serious concern in aircraft industries. Such impacts are unavoidable in 
normal aircraft operations. In case of metal structures, impact damage is not generally considered to be a threat owing to the 
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also used here to account variation in heating along the surface. The 1st, 100th and 500th frames of newly generally image 
sequence are shown in Figure 12. From this generated image sequence some additional information are getting regarding 
the bonding between stiffeners and surface. In the raw thermal image, the four stiffeners’ regions have almost uniform 
thermal contrast. But in the newly generated image sequence these regions do not have same kind of thermal contrast. The 
reason for this difference is the time delay in heating the fourth stiffener with respect to first stiffener.  In the newly generated 
image sequence the first and the fourth stiffeners are barely visible in 1st and 100th frames and it is enhanced in the 500th 
frame. The reason might be the slow diffusivity of generated heat due to lack of proper bonding between stiffeners and 
surface. These defective bond regions are taking more time to take away the heat from the surface compared to good bond 
regions (second and third stiffeners regions). 
 
5. Conclusions 
 
The main objective of this work was to study the feasibility of Scanning Induction Thermography (SIT) on composites to 
assess various defects. Using this hybrid technology we could clearly identify the crack like defects such as fiber breakage 
during impact, fiber matrix separation etc, presence of stiffeners, strength of bonding between surfaces and other thickness 
variations (from 2.5 mm to 5 mm). In figure 4, even the fiber orientations were found to be imaged.  The main advantage of 
this technique is that it investigates large areas with short span of time and is extremely sensitive to defects that have 
footprint at orientations perpendicular to the plane of the surface. Also, by orienting the coil in appropriate directions, the 
orientation of the flaw can be imaged. In addition, complex contoured components can be examined using coils that are 
configured to match the shape of the component, thereby ensuring the quality assurance of such components. However it 
must be noted that the multiple delaminations caused due to impact (that is visualized using immersion ultrasonic C-scan in 
figure 9b) could not be identified using this technique. This could be due to the penetration of the EM fields through these 
delaminations. However, more detailed analysis of the data using numerical models is underway to ascertain the feasibility of 
detection of delaminations in composites using this method. Also, the excess heating at edges leads to difficulties during 
inspection of these critical regions. This edge heating can be predicted and algorithms for analyzing data from such regions 
must be developed in order to extend this technique to such regions. 
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