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Abstract  

An analytic solution to the heat equation is used to model the response of subsurface defects in pulsed 
thermography. The model is compared to measurement data and shows good agreement, both in spatial and temporal 
domain. The capability of the model is then demonstrated by calculating the response of arbitrary defects at different 
depth. This model, even though simplified, can prove useful due to good accuracy and low computational time for 
comparing analysis methods and for evaluating a thermography method on a new material or new type of defect. 

1. Introduction 

Pulsed thermography is a non-destructive testing method which is today used mainly for composites [1], 
ceramics [2] and plastics [3], although applications for metals also exists [2-4]. In pulsed thermography a short pulse of 
energy, usually from a flash lamp, is used for heating the surface of the test piece [5]. This heat is conducted into the 
material in accordance with the heat equation. If any defect exists under the surface it will block the heat flow and an 
area of higher temperature, compared to a defect free area, is created above the defect. If the surface temperature is 
monitored with an IR camera after the pulse, it is possible to detect defects as areas with increased temperature. Since 
the heat flow is diffusive and spreads out in all directions, the response from a sub-surface defect will be unclear. This 
makes determining the size and shape of a defect more difficult. The amplitude of the response also decreases with 
depth, which makes defects with a diameter smaller than the depth difficult to detect.  

One way of gaining more knowledge of a method, and to evaluate if it is suitable for a certain application, is to 
use modelling. As thermography gains acceptance as a non-destructive testing method, it becomes increasingly 
important to have accurate methods for modelling. It is possible to model thermography using finite element methods [6]; 
however this is generally computationally heavy, especially if the response is calculated at several times and the 
excitation is a transient as in pulsed thermography. Another way of modelling heat conduction is to use an analytic 
solution. This is usually faster although there are often limits in the complexity and geometry of the material. There are 
several advantages of using modelling instead of experiments, in terms of speed and cost, when it comes to evaluating a 
thermography method on a new material or new type of defect, as well as for comparing different evaluation methods [7]. 

2. Theory 

Starting with the heat equation 

  

  
                                                                                                                         

where   is the energy density for a homogeneous material and α is the thermal diffusivity, defined as        .   is 
here the density,    the specific heat capacity and   the thermal conductivity. This equation can be solved, for a semi-
infinite space, in the Fourier domain using the initial condition 

                                                                                                                           

where      is the energy distribution at time     and   is the spatial coordinates. The solution to Eq. (1) for 3-
dimensional heat conduction is given by  
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This solution is only valid if the material is homogeneous and not in the presents of any defects. In order to have 
homogenous material properties, only the heat conduction down to the defect is considered. The defect can instead be 
modelled as a reflector of heat [8]. The heat density at the surface of the test piece can then be separated into two parts, 
   and   . The first part,   , is the response of a defect free, semi-infinite, material from the initial pulse. This is here 
regarded as the background since it does not contain any information about the defect. If the whole surface is heated 
evenly by the initial pulse, the heat conduction will be 1-dimentional and the background is given by 
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where    is the amplitude of the pulse. Since this part of the solution does not contain any information about the defect, it 
is often subtracted during a thermography inspection. The second part,   , is the heat reflected in the defect. If the size 
and shape of the defect is given by   , which also has amplitude   , then the contribution from the defect, at the surface 
of the test piece, is given by  
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where   is the depth of the defect. Naturally the heat from the defect will also be reflected in the surface of the test piece 
and in turn in the defect again, but the contribution from these additional reflections is generally small if the defect is not 
large and close to the surface. The model here will therefore use only one reflection, but additional ones can be added if 
needed. There are also other contributions to the response from a defect, such as diffusion around the edge of the defect 
[9], but these are omitted in this model. Eq. (5) consists of two terms. The first term, 

  
  

  

         
                                                                                                            

affects the amplitude of the response from a defect and is dependent on the depth of the defect, and the second 

          
     

                                                                                                        

makes the signal from the defect less sharp as time increases. Eq. (7) is a convolution between   , describing the shape 
of the defect, and a point spread function, with the same shape as a Gaussian filter, which increases in width as time 
increases. 

An analytical solution, at    , for a semi-infinite plate containing a defect and with an initial pulse as heating 
can then be written as the sum of Eq. (4) and Eq. (5).  
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Using Eq. (8) it is possible to estimate the response from an arbitrarily shaped defect, at any time after the heat pulse, for 
this simplified geometry. 

3. Experimental setup 

Experiments were carried out in order to validate the model, using a 4mm steel plate with a flat bottom hole that 
had a diameter of 9.5mm and a depth of 0.75mm. The material properties were retrieved from a table and adjusted until 
there was a good compliance.  

The thermography system used for the validation experiment consisted of a FLIR SC 5650 IR camera with a 
band width of 2.5 – 5.1 m and a 27 mm optical lens. The camera had an InSb detector with a resolution of 640x512 
pixels and a frame rate of 100Hz. The flashlamp used delivered a 10ms, broadband pulse with a total energy of 6kJ. The 
distance between the flash lamp and the test piece was 0.16m, the same as the distance between the camera and the 
test piece. Both the camera and flash lamp were at a slight angle to the normal of the test piece. The experimental set-up 
can be seen schematically in figure 1. 
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Fig. 1. Schematic drawing of the experimental setup. 

4. Results and discussion 

The model in Eq. (8) was implemented using Matlab®. First an image representing the defect    was created. 
Each pixel in this image was multiplied with Eq. (6) to form an image sequence with the effect of the defect depth. The 
Gaussian point spread function from Eq. (7) was then calculated for each time step in the sequence. Each image in the 
sequence was then convoluted with this point spread function using a 2-dimensional convolution. If the background is of 
interest it is added in the end to the whole image sequence. 

The comparison between experimental data and the model is presented in figure 2. It can be seen that all three 
parts of Eq. (8) show good agreement to the measured data. Eqs. (4), (6) and (7) correspond to the left, middle and right 
plots in figure 2 respectively. The correlation between the model and experimental data was similar for all points in time 
during the experiment, although the signal to noise ratio decreased as time increased. 

 
Fig. 2. A comparison between the model and measured data shows good agreement. The left plot shows the 

background signal in the absence of a defect. The middle plot shows the response of a defect with the background 
removed. The right plot shows a cross section of the defect 400ms after the flash, also with the background removed. 

Using this model it is possible to model the response of defects of different sizes, shapes and depths in different 
materials. Figure 3 shows the response from a square defect, with a width of 10mm at a depth of 1.5mm, in a mild steel 
plate. In order to have a clearer view of the defect, the background has been removed. The initial heat pulse is at time 
    and as can be seen, the maximum response is about 300ms after the initial heating. It can also be seen that the 
shape of the defect quickly disappears as time increases. The reason for this can be found in the point spread function in 
Eq. (7), which is a Gaussian function which increases in width as time increases.  
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a) Time 100ms 

 
b) Time 200ms 

 
c) Time 300ms 

 
d) Time 400ms 

 
e) Time 500ms 

 
f) Time 600ms 

Fig. 3. The responses from a square, 10mm in width, defect at different points in time. The scale on the x and y-axis is in 
mm. 

To demonstrate the possibilities of modelling arbitrarily shaped defects the response from three defects with the 
shape of the letters A, B and C, as seen in figure 4a, were calculated and the result is presented in figure 4b-d. The 
depths of the defects were 0.5, 1.0 and 1.5mm respectively for the A, B and C. The material properties used in the 
calculations were those of mild steel. Here it is even clearer that the shape of the defects becomes less distinct as time 
increases. It can be seen that two defects that are close to each other will become difficult to separate after a short time. 
Comparing the letters A and C, which are at different depths, it is clear that the depth affects the amplitude of the 
response greatly which is why it is difficult to detect defects smaller than the depth.  

During a real thermography inspection noise is added to each image, as can be seen in the experimental data 
in figure 2. To model this, it is possible to add a noise term to Eq. (8), either random noise or a more accurate noise 
model. 
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a) Shapes of the defects 

 
b) Time 100ms 

 
c) Time 200ms 

 
d) Time 300ms 

Fig. 4. Results from simulation of three arbitrary defects with shapes like the letters A, B and C and depths 0.5, 1.0 and 
1.5mm. The scale on the x and y-axis is in mm. 

One of the main advantages with this simplified analytical model is that the computational time is low even for 
complex defects such as those in figure 4. To calculate the response from these defects, with a resolution of 128x128 
pixels at 20 different times, took less than 0.2s on a normal laptop. 

5. Conclusion 

A model has been developed that can be used for modelling arbitrarily shaped defects in homogenous material. 
Since it is an analytical solution it can be computed relatively fast for any defect shape and for any point in time, without a 
loss of accuracy. A comparison was made to real data which showed a good agreement even though the model is for a 
simplified geometry. To demonstrate the possibilities of the model, the response from three defects with complex shapes 
was presented at different times from the initial heat pulse. Since this is a simplified model it has limitations but, as can 
be seen, it shows good correlation to experimental data. Some of the limitations are that it is limited to a simplified 
geometry of the test piece and that the initial heating needs to be even and a short pulse. The modelling of a defect as a 
reflector of heat works well for volumetric defects but for thin defects, such as a delamination, this might be inadequate. 
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