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1. Introduction  

 
In the contemporary measurement theory, the new methods of accuracy determination are still 

investigated. It is possible, that the theory of uncertainty is a universal tool for the estimation of accuracy [1, 2]. 
This theory allows for the analysis of random interactions, even if the measurement model is strongly nonlinear. 
According to the theory of uncertainty, the standard uncertainty plays the main role in the accuracy determination. 

The problem of determination of uncertainty components in thermovision measurement was described in 
[3-6]. In this paper the analysis of the measurement method accuracy, based on the coverage interval idea was 
presented. In the simulation research, the model described in [4, 5, 7] was assumed. It can be formulated as 
a function of five input variables: 

( )dω,T,T,εf=T
atmobob 0, ,        (1) 

where: εob – object emissivity, Tatm – the temperature of atmosphere, K, T0 – ambient temperature, K 

ω  – relative humidity, d – distance between infrared camera and the object, m. 
In the research of components of combined standard uncertainty, by means model (1), Monte Carlo 

simulations were used. The expanded uncertainty, with the assumed level of confidence was calculated using the 
method for the propagation of distributions. 

 
2. The method for the propagation of distributions and Monte Carlo simulations 

 
The goal of the use the propagation of distributions is the determination of uncertainty, using Monte Carlo 

simulations. The fundamental purpose of computational procedure is to obtain a statistical coverage interval of the 
measurement model output variable. It is necessary to emphasize, that the results of calculations are correct, 
even if the model is strongly nonlinear and the probability density functions of output are asymmetric. This 
situation takes place in the thermovision measurements. 

The Common Commitee for Basic Issues In Metrology took this into consideration and worked out 
“Supplement No.1” entitled “Numerical methods of propagation of distributions” [8]. “Supplement...” deals with 
evaluation of precision in indirect measurements, with particular emphasis on strongly nonlinear and/or 
complicated measurement models, like e.g. the processing algorithm of measurement path of an infrared camera. 
The method of propagation of distributions makes it possible to give a correct estimation of a measurement 
precision, in particular in the following cases [9]: 

• the partial derivatives are unavailable, 

• the distribution of the output variable is not Gaussian, 

• the distributions of input variables exhibit assymetry, 

• the measurement model is a strongly nonlinear function of input quantities, 

• the uncertainty ranges of individual input quantities are incomparable. 

The idea of the propagation of distributions is illustrated in Fig. 1. The symbols in Fig 1 denote: )( iig ξ  – 

probability density functions of permissible values 
iξ  of the i-th input quantity Xi; )(ηg  – probability density 

function of permissible values η  of the measurement model output quantity Y.  

The method for the propagation of distributions evaluates the uncertainties using Monte Carlo method. The 
principal aim of the computational procedure is to evaluate the statistical coverage interval at a specified 
confidence level. It is worth to emphasize that the procedure gives correct results even for strongly nonlinear 
functional relationships of measurement models as well as for assymetric probability dennsity functions of input 
random variables. The following steps can be distinguished in the evaluation of uncertainty: The method for the 
propagation of distributions consists of following steps [8]: 

• Determination of the output random variable of the model. 

• Determination of the input random variables of the model. 

• Model design. 

• Determination of the probability density function of the input variables. 

• Calculation of the probability density function of the output variable using Monte Carlo simulations. 

• Estimation of parameters of the probability density function of the output variable and 95% coverage interval. 

1. The Monte Carlo method makes the numerical approximation of the cumulative distribution )(ηG of the output 

quantity possible. The simulation is based on the assumption that any value of an input quantity chosen at 
random from all permissible values of this input is as  justified as any other. In other words, no value is 
preferred. Hence, drawing values of each input quantity according to the probability distribution function 

http://dx.doi.org/10.21611/qirt.2008.04_01_02



9th International Conference on Quantitative InfraRed Thermography 

assigned to this input validates the set of its values. The value of the measurement model output 
corresponding to the drawn values of the inputs is a representative output. Consequently, a big enough set of 
the output values obtained from the model in this way can approximate, with required accuracy, the 
probability density distribution of permissible values of the output (the measured quantity). The Monte Carlo 
simulation is conducted in the following steps [8]: 

2. Generation of a set of N values by an independent sampling of the probabilisty density function of each input 

variable NiX i K1, = . In the case of statistically dependent variables the samples must be generated with the 

use of the joint density function of these variables. The sampling is repeated M times, where M is a big 
number. As a result, we obtain M independent sets of N values of the inputs.  

3. Simulation of the model for each set of values.  As a result, we obtain a set of M values (realizations) of the 
model output variable Y. This set is de facto a numerical approximation of the probability density distribution 
of the output variable.  

4. Determination of the approximation )(ˆ ηG of the cumulative density function )(ηG of Y, based on the 

generated set of values. 

5. Evaluation of statistical parameters of the output variable distribution on the basis of )(ˆ ηG . In particular, the 

following are determined: the measured value y as the expected value of )(ˆ ηG  , the estimate of the standard 

uncertainty u(y) – as the standard deviation of )(ˆ ηG  , and the ending points of the confidence interval Ip(y) for 

the assumed coverage probability – as two quantiles of )(ˆ ηG  .  

 
3. The simulations of combined standard uncertainty in the thermovision measurements 

 
 Methodology of the simulation research 

 
The analysis of the model (1) should lead to the combined standard uncertainty estimation. The combined 

standard uncertainty characterizes unequivocally of the measurement accuracy in the statistical sense. In the 
paper, the method for the propagation of distributions, described above is used to estimate of the combined 
standard uncertainty. The simulation results of the object temperature uncertainty uc(Tob) were obtained under 
assumption of the uniform probability distribution. The investigations were carried out for the exemplary 
uncertainties of the inputs. In the last stage of the accuracy analysis the 95% coverage interval of the output was 
estimated. This interval was calculated on the basis of the probability distribution obtained from simulations of the 
model (1) in accordance with the hints enclosed in [8].  

The simulation research of the combined standard uncertainty was conducted 4 cases, depending on the 

εob and Tob estimates. It was assumed the two values of the object emissivity: 0,4; 0,9 and also two values of  the 
object temperature: 323 K (50

o
C); 363 K (90

o
C). The results of the simulations are valid for the first measurement 

range for the typical infrared camera. For different camera measurement ranges the different calibration constants 
are valid. In the simulations, the model of the FLIR ThermaCAM PM 595 camera was used. In each case the 95% 
coverage interval I95% was calculated. These intervals were compared with the coverage intervals on the 
assumption that the output variable has a normal distribution. The normal distribution is assumed for the output 
variable in  most practical situations.  In order to estimate the influence of the distribution asymmetry for the length 

of the 95% coverage interval, the dependence between this length and the order of the α-quantile was presented. 
It enables the comparison of the minimal length of the I95% with the I95% under the assumption of the normal 

distribution of the output (α = 0,025). Due to the determination of the 95% coverage interval it is necessary to set 

the value of the α-quantile of the output variable. If the probability density function is symmetric, then the value of 

α can be expressed as: 

2

1 p−
=α ,          (2) 

where: p – the level of confidence (for example, p = 0,95 (95%) corresponds to α = 0,025). 
 

 Results of the simulation research 
 
The simulation research of (1) was carried out using author’s software created in the MATLAB 

environment. The data for simulations (the estimates of the input variables and their standard uncertainty) were 
collected in Table 1 and 2. 

 

Table 1. Estimates of the input variables accepted in the combined uncertainty research of the model (1) 

Object emissivity 

(εob) 
Ambient 

temperature (T0) 
Temperature of 

atmosphere (Tatm) 
Relative humidity 

(ω) 
Distance 

 (d)  

0,9; 0,4 293 K 293 K 0,5 10 m 
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Table 2. Standard uncertainties of the input variables accepted in the combined uncertainty research of 
the model (1) 

Object emissivity 

(εob) 
Ambient 

temperature (T0) 
Temperature of 

atmosphere (Tatm) 
Relative humidity 

(ω) 
Distance 

 (d)  

0,09; 0,04 (10%)  9 k (3%) 9 K (3%) 0,05 (10%) 1 m (10%) 

 

Table 3. Coverage intervals calculated from Monte Carlo simulation and from 
the normal distribution 

εob Tob, K uc(Tob) I95%-sym I95%-norm 

323 2,9 (0,9%) [319, 329] K (10 K) [317, 329] K (12 K) 
0,9 

363 5,6 (1,5%) [355, 373] K (18 K) [352, 375] K (23 K) 

323 11 (3,4%) [302, 341] K (39 K) [300, 344] K (44 K) 
0,4 

363 9,9 (2,7%) [345, 382] K (37 K) [343, 382] K (39 K) 

 
In this paper the two 95% coverage intervals were compared. The first one was obtained from the 

distribution function of the output variable of the model (1). The second one was calculated considering, that the 
output variable has a normal distribution. The probability distributions of the output of the model (1), obtained from 
Monte Carlo simulations taking account above conditions are presented in Fig. 2, 4, 6, 8. The coverage intervals 

are collected in Table 3. The relationship between the α parameter and the 95% coverage interval was presented 
in Fig. 3, 5, 7, 9. The 95% coverage interval obtained from Monte Carlo simulations was marked with solid line. 
The 95% coverage interval considering normal distribution was marked with broken line. 

 
4. Conclusions 

 

• The value of the combined standard uncertainty strongly increases with the decrease of the object emissivity 

εob.  

• Comparing the 95% coverage intervals from the approximation of distribution function of output variable and 
from the assumption of normal distribution, one can observe that the differences are negligible.  

• Indeed, as shown in Fig. 1 -2, the broken line of the coverage interval for the normal distribution is lying 
always under the solid line obtained from simulations. 

• Taking into account of the above conclusion, it was found, that in the considered cases the assumption for 
the expanding factor k equal to 2 is safe for the 95% confidence level.  

• As can be seen from the presented simulation results, the asumption of k = 2 leads to insignificant expansion 
of the 95% coverage interval in each case considered in the simulations. 

• In other words, the confidence level of the interval determined under the assumption of the normal 
distribution of the output, is crossing 95%. It confirms the thesis of the safety assumption of the normal 
distribution. 

• The assumption of the normal distribution of the output variable of the model (1) – according to the central 
limit theorem – is safe from the viewpoint of the underflow of 95% coverage interval. 
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Fig. 1 Propagation of distributions [8] 
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Fig. 2 The probability density function of the output variable in the model (1) for Tob = 323K and εob = 0,9 
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Fig. 3 The 95% coverage interval as the function of α  parameter for Tob = 323K and εob = 0,9 
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Fig. 4 The probability density function of the output variable in the model (1) for Tob = 363K and εob = 0,9 
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Fig. 5 The 95% coverage interval as the function of α  parameter for Tob = 363K and εob = 0,9 
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Fig. 6 The probability density function of the output variable in the model (1) for Tob = 323K and εob = 0,4 
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Fig. 7 The 95% coverage interval as the function of α  parameter for Tob = 323K and εob = 0,4 
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Fig. 8 The probability density function of the output variable in the model (1) for Tob = 363K and εob = 0,4 
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Fig. 9 The 95% coverage interval as the function of α  parameter for Tob = 363K and εob = 0,4 
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