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Abstract  
 
The aim of this work is to conceive a thermal NDE method in order to detect 

source terms placed under thin diffusive plates, with an extension to thermal bridges 
in insulating stratified media. Contrarily to the detection of delaminating in composite 
samples, such situation induces strong 2D transient effects which force us to 
consider the spatial correlation between the pixels. In order to avoid a heavy 
inversion process, a suitable approximation of the exact analytical model of heat 
diffusion is developed, in order to estimate the lateral size of the source term. The 
interesting feature of this method is that robust estimations are processed with no 
prior knowledge of the measurement noise variance. Experimental results illustrate 
the method. 

 
1 Introduction  

 
Infrared thermography provides a tool for drawing thermal properties 

mappings. It is thus often used in NDE of laminates. Some possible applications are 
to detect delaminated areas in stratified media [1], to find in-plane defects on thin 
plates [2], to find cracks in semi infinite media [3], or even to locate thermal bridges in 
insulating stratified media [4].  

In the case of thermal bridges between two plates, the difficulty in the 
estimation of the size and location of the contact is the same as for any source term 
under a plate: 2 dimensional heat transfers in the front face of the device induce a 
“blurring” of the initial shape of the source term. An inversion can be performed with 
the knowledge of the heat transfer model to trace the original pattern of the heat 
source. Such an inversion can be performed by analysing the relations between 
spatial and temporal derivatives of the front face temperature field. This study can be 
done in a sequential way as proposed in [5,6]. In a similar fashion the Total Least 
Squares (TLS) method [7,8] is very suitable because it estimates robustly a source 

term ( )yxQ , placed under the front face at each pixel, and is implemented in an 

autoregressive way. The computation of the 2D source terms field is then available. 
Yet this method requires a linear formulation of the problem. To this aim a simplified 
model is developed. Contrarily to [1], where defects have to be of small lateral size at 
a known location, no constraining hypotheses are required here.  

Such situation allows studying the exact dimension of very small diameter 
heat sources through opaque layers. In such cases, the spatial camera resolution or 
the considered layer thickness are limiting the estimation of the contact real size. 
Nevertheless, a local contact with a heat source can be estimated and constitutes a 
first approach in order to study very small contacts.  
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In this study, a simplified model of heat transfers in stratified media with 
thermal bridges is presented. A parallel is drawn with the case of a resistive wire 
placed under a diffusive thin plate. The same model is used to implement the TLS 
estimator in the two cases.  

 
2 3D Direct model 

 

 

IR camera 

Solid layers 

insulator 

Pillar Heating layer 

 

Fig. 1. Scheme of the stratified medium with thermal bridges 

 
In a classical way, a constant heat flux is applied on the rear face by means of 

a heating layer. The thermal scene is shot with an infrared camera on the front face. 
The thermal insulation is considered as a purely resistive layer of null thickness. The 
heat transfer is then governed by the following equations: 
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This 3D problem has been studied with the quadrupole approach 

[2,3,4,9,10,11]. The Fourier integral transform versus yx and space variables and 

the Laplace transform versus time are used to obtain: 
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The terms of the transfer matrix related to the transfer inside the conductive 

layers are purely diagonal: 
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The heat flux at 0=z is assumed to be uniform and so the Fourier transform 

vector has only one component at the null spatial frequency, such as: 
  

[ ]T
QlL ,...0,...,,0=Q  (5) 

 
 I is the identity matrix and R is a full matrix traducing the spatially non uniform 

transfer at ez = . The form of this matrix was discussed in [10,11]. The temperature 

vector in transformed space at ez 2= is then: 
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With this expression the formally exact solution is known. Yet the matrices to 

be inverted are large, and the numerical implementation is thus computationally 
heavy. Yet a first order approximation can be drawn provided the amplitude of R is 
large enough: 
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At long times ( 0→p ), and provided the conductive layers are isothermal 

following the thickness direction. The following relation holds in the Laplace-Fourier 
space: 
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It yields: 
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So that when applying the inverse Fourier and Laplace transforms the 

following relation stands: 
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In the case of a resistive wire placed under a diffusive thin plate, the problem 

is very similar 
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Fig. 2. Scheme of the resistive wire placed under a diffusive plate 
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The quadrupole formulation is even simpler in this case since 
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In this case the source term is spatially non-uniform consequently the system 

can be represented as a heterogeneous heat source heating a two-layered medium. 
The rear face layer being a homogeneous stratum with no in plane diffusion and 
constant properties represented by the constant diagonal matrices 

IC ⋅′= C' and IR ⋅′= R' , and the front face being represented by the transfer 
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


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detailed in Eq. (4). The flux is now: 
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Thus, with similar assumptions, a simple relation analogue to Eq. (7) is 

obtained: 
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And by following the same reasoning as in Eq. (8,9,10), it yields: 
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The term ( )
( )2

1

ec

y,xQ

'R ⋅ρ
inside the previous expression can represent a non-

uniform heat flux or a non uniform capacity distribution or contact resistance. 
Such simple models are physically non-accurate, but can be used in fast 

detection algorithms. They are particularly adapted to Total Least Squares 
algorithms. 

 
3 Estimation method: The Total Least Squares 

 
In the case of linear systems such as: 
 

( )yxt)yB(xt)yA(x ,,,,, β⋅=  (16) 

 

Where t)yA(x ,, is the observable at location ( )yx,  and time t, ( )yx,β is 

the parameter vector constant over time and t)yB(x ,, contains the elements of the 

linear model such as derivatives with respect to time or space variables. In the case 
of the above example, the different terms of Eq (16) are: 
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The system (16) is underdetermined so more than one time steps are required 

to compute ( )yx,β . Indeed if ( )yx,β is assumed constant over time it stems that:  
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It is demonstrated [12] that a more convenient formulation is: 
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This formulation enables a resolution in the Total Least Squares (TLS) 

fashion. The TLS estimator is derived from the Ordinary Least Squares (OLS) and is 
more adequate here because it takes into account the errors in the variables of the 
linear model [8]. The TLS methodology consists in finding the eigenvector 

( )yxV ,min to the smallest eigenvalue ( )yx,minλ of ( )yx,J  with:  
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 The Least Squares estimator is the maximum likelihood estimator when 

t)y(x ,,B  is known without error [4]. Yet in the case when ),,( tyxT is a 

temperature measured with an Infrared camera 
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by measurement noise that may lead to a bias in the estimation process. For all 
these reasons, the Total Least Squares offer an improved version of the classical 
Least Squares estimator [12]. TLS compensate for errors in the variables and 
present other interesting features: They provide the number of parameters that can 
be estimated at each location, and may give a confidence measure associated to the 
estimation. A simple use of the TLS with no prior knowledge of the measurement 
noise variance is possible thanks to the automatic computation of a threshold using 
Akaiké’s theory [13]. Complementary details about TLS and Akaiké method are given 
in a parallel paper [14]. Thermophysical parameters are computed using 
experimental data, mappings are drawn and permit to locate and measure the 
dimensions of the source terms.  

 
4 Experimental results 

 
The aforementioned model was used to implement the TLS estimator on two 

distinct infrared image sequences. The first application concerns the simultaneous 
detection of a thermal bridge and the measure of its dimensions in parallel with 
diffusivity estimation. The second application deals with the detection and 
measurement of a source term under a thin diffusive plate along with a diffusivity 
estimation of the plate. Both cases are modelled with a same simplified model. The 
thermal scene is filmed by a JADE camera (CEDIP) equipped with a 

256256 × InSb detector matrix working in the [ ]mm µµ 2,5;5,1 range. The spatial 

resolution of the camera using a lens of focal length ml
3_1025 ⋅= is 

roughly mx
610305 −⋅≈∆ . 
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4.1 Thermal bridge detection 

 
The experiment presented here corresponds to the device depicted on fig 1. 

Two m
4107 −⋅ thick steel plates are separated by a thin insulating foam layer and 

the thermal bridge is a small metallic pillar.  
 

premiere image

 

derniere image

 
 

Fig. 3. First and last image of the IR sequence 

 
pont thermique

  
 

Fig. 4. Location of the thermal bridge, Diffusivity mapping 

 
Thanks to the image processing a mapping with enhanced contrast is 

obtained. A circle of diameter pixelsd 6≈ is measured. Given the spatial 

calibration of the camera, this corresponds to a m
3108,1 −⋅  diameter. This result is 

encouraging since the real diameter of the thermal bridge is m
3102 −⋅ . The 

accuracy of the diffusivity mapping is not investigated here, though the fact that the 
thermal bridge does not appear on the diffusivity mapping is coherent with the 
simplified model. 
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4.2 Source term detection 

 
The experiment presented here corresponds to the device depicted on fig 2. A 

heating wire is fixed under a m
4107 −⋅ thick conductive steel plate. 

 
premiere image

 

derniere image

 

Fig. 5. First and last image of the IR sequence 

 
pont thermique

  

Fig. 6. Location of the source terms, Diffusivity mapping 

 
Again here the contrast is enhanced and the source term width and position is 

clearly displayed. The measured width is equivalent to m
3105,0 −⋅  diameter as 

compared to the real width which is m
31035,0 −⋅ . Yet the detected source term is 

only 2 to 3 pixels large, at this scale the approximate spatial calibration of the camera 
is clearly a limit to the fine measurement of the wire diameter. 

 
5 Conclusions and perspectives 

 
Simple models were developed to describe thermal transfers in 3D 

multilayered media in order to obtain direct expressions with linear differential terms 
versus time or space. These models allowed applying fast Total Least Squares 
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algorithms to inverse the temperature field. The main advantages of such algorithms 
are to allow a nodal approach instead of the inversion of very large linear systems. It 
can be useful in the case of small sized thermal bridges Even if the approximations 
are not accurate, such algorithms can be used as primary approach in order to 
enhance the defect detection. 
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