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Abstract 
 
The general mathematical approach of the solution of inverse problem of 
nonstationary heat conductivity equation is given. This approach is applied for 
creating a method of determination of the  thermalphysical parameters of an building 
construction using experimental data and prospective values of these parameters. 
Advantages of such approach are discussed. An example of successful 
implementations of this method for the real building structures examination in 
practice is given. 
 
Introduction 
 
Increasing energetic efficiency is currently a major problem in the industrial countries. 
Considerable contribution of industrially produced energy is used by buildings of all 
kinds. The buildings receive the energy in several kinds (e. g. electrical or by means 
of stream-heat pipe) and at last emit it outside as warmth. One of the problems of 
thermal nondestructive testing of the building refers to the determination of the 
building’s speed of the heat emission . 
This problem is especially actual in northern countries where thermal resistance of 
the building’s walls determines the conveniences of houses and economical 
efficiency of building heating. 

The solution of the problems described above consists of two phases: the 
experimental and the theoretical ones [1]. The experimental phase runs at the 
considerable object. The first part of the work includes the measurements of 
temperature’s series of inner and outer air and temperature of inner and outer 
surfaces of the fragment of wall under consideration. One also needs to make a 
thermal imaging of all surfaces of outer guarding construction of the building. The 
received data is processed at the second phase of the investigations. The 
requirement of rapid examination of the considerable construction and the huge field 
of the application of such investigation leads to the necessity of the creation of the 
certified practical methodizes and the calculation methods. 
 
Results 
 
The first lets discuss the general mathematical approach of the solution of inverse 
problem of nonstationary heat conductivity equation needed for the solution of the 
first phase. Solution of inverse problem in general form bases on solution of direct 
problem viewed in the following meaning: considerable object parameters need to be 
selected so that a calculated function (some function of time ( )τU ) becomes closer 
to the measured reaction function ( )τ0U .Therefore, inverse heat conductivity 
problem is reduced to problem of probability functional extreme search (integration is 
carried out at range (0,t)): 

( ) ( )( )∫ Θ−=ΘΦ
t

dUU
0

2
0  τ,)( ττ     (1) 

where Θ  is the selected set of the parameters.  
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Let’s pick out of the Θ  set of parameters a subset, an explicit dependency of which is 
known. This set is marked ϕ  and the other variables – Ψ . Therefore ( )ΘΦ  becomes 
a new function ( )ΨΦ ,ϕ . According to minimum search: 

( ) 0Ψ,
τ

=
∂

Φ∂
−=

i

i

d
d

ϕ
ϕϕ . (2) 

Thereby the dimension of given system is effectively reduced by a number of 
variables, analytical dependency of which is now known. Well known that the 
statement of direct problem of heat conductivity is bases on the law of conservation 
of energy, written as equation of continuity [2] (let’s discuss equation bounded body 
without a source): 

( ) ( ) 0,,
=+

∂
∂ trJdiv

t
trQ , (3) 

where ( )trQ ,  and ( )trJ ,  are correspondingly thermal energy and thermal flux 
volume densities, both determined by 

( ) ( ) ( ) ( ) ( ) ( ) ( )
r
trTrtrJtrTrCrtrQ

∂
∂

==
,,,, λρ ρ

,  (4) 

where ( )trT ,  – temperature, ( )rρ  – medium density, ( )rCρ  – it’s specific thermal 

capacity, ( )rλ  – heat conductivity. At general the three last values are thermalphysic 
local characteristics, in practice it is usually determined  heat conductivity. Usually 
equation (3) is considered at 1d and 2d approximations taking into account the 
symmetry of the problem and chosen direction of the heat flux, e. g. “from the outer 
space to the inner”. 
The initial and boundary conditions need to be added for heat conductivity equations 
to be restraint. The boundary conditions in linear approximation: 

( ) ( ) ( )( )tTtT
n
tT

00
0

0 αλ −=
∂
∂

− , (5) 

where the thermal flux at the object’s surface stays at the left part (time partial 
derivative is used in direction of surface’s normal), 0α  – coefficient of the thermal 
emission, ( )tT  – known temperature of the environment (air), ( )tT0

 – object surface’s 
temperature. 
In practice the initial conditions mostly have no meaning: on the expiry of the specific 
time there contribution into general solution (3) would be insignificantly small. This 
specific time (e. g. for single-component outdoor structure) is determined using 
formulae: 

λ
ρ

π
ρCLTd

2







= , (6) 

Therefore, the extreme is found by solving the direct equation of thermal conductivity 
(3) and substituting it into (1) with parameters determined as described above 

The approach discussed above can be applied for an examination of a 
building’s outdoor structure. Having some experimental data and building’s projected 
characteristics, one can calculate different heat-engineering parameters of such 
object. As it was pointed above the investigation procedure has two stages. First of 
all, one needs to calculate a thermal resistance of chosen fragment. The calculation 
algorithms essentially use one-dimensional approximation of the heat problem. That 
is why one needs to select for investigation a fragment of the guarding constructions 
with a homogeneous distribution of temperature field on its surface. The linear 
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dimensions of the selected fragment must be few times greater than its thickness in 
order to provide the one-dimensional approximation to be correct. In order to carry 
out the investigation one needs to measure four time series of temperatures: the 
temperatures of inner and outer air and temperatures of inner and outer surfaces of 
the selected fragment of wall. In our investigations we register required temperature 
time series for 4-5 days for the non stationary regime. A time interval between 
successive measurements must be few time shorter than characteristic time of outer 
air temperature variation. In our investigation we use 5 minute interval between the 
successive measurements. As analysis shows that several “minimal sets” of data can 
be picked out of the total set of temperature time series. Such minimal set provides 
enough information for the examination procedure. It includes two variable series, 
measured indoors and outdoors (for the solution of the direct heat conductivity 
problem) and one more series measured either indoors or outdoors (for the selection 
of the thermalphysic parameters, implementing (2) extreme), i.e. 3 temperature time 
series altogether. 
Having these 3 temperature time series it is possible to advert to direct algorithm of 
heat conductivity value selection. Using 2 temperature series at the bounds of the 
outoor structure direct one-dimension heat conductivity problem (3) is solved 
analytically or numerically taking into accounts boundary conditions of the first kind 
(within (5) heat emission factor is tends to infinity), i.e. it is solved with given 
temperatures at the surfaces. Using obtained solution, i.e. temperature profile of the 
outdoor structure at any point of time ( )txT ,,, 0αλ  where x  is coordinate, the heat 
flow through the surface is calculated at the same bound with known air temperature. 
Using boundary condition (5) it is easy to express temperature value, which could be 
reached if the selected set of thermalphysic characteristics took place: 

( ) ( ) 
α

,λ
,α ,λ 0

0
0 tT

tJ
t)(T n

n += , (7) 

where ( )tJ n ,λ  is calculated heat flow, ( )tT0  – measured temperature at the same 

surface. It is clear that information about heat conductivity λ  is found in the 
calculated flow ( )tJ n ,λ . Furthermore, there is a measured curve of air temperature 
dependent of time ( )tTa  and a set ( )λα ,0  which would be discussed as real if they 
provide the closeness of ( )tTn ,, 0αλ  to ( )tTa , i.e. calculated and measured air 
temperatures. 
This way, the initial problem turned to kind of (1), i.e. to problem of “probability 
functional” [ ]nTΦ  extreme search. The functional gives the calculated air temperature 
distance degree from it’s value calculated by solving direct heat conductivity problem 
(3): 

( )[ ] ( ) ( )( )∫ −=Φ
t

ann dTTtT
0

2
00 ,,, ττταλαλ                    (8) 

If one can solve problem of determination ( )tTn ,, 0αλ  analytically (direct problem of 
heat conductivity), functional (8) becomes a function of thermalphysic parameters (1). 
The characteristics of our interest determined by means of global minimum search. In 
practice numerical heat conductivity equation solutions is preferred. 
According to above-stated, the boundary condition (5) is discussed as the additional 
data about view of explicit functional dependency of some parameters (α0 in this 
case) or as the same, the probe variation function. Taking into account (7), (8) is 
written as following: 
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Let’s determine (9) extreme of variable 0α  (this extreme is conditional in fact) by 
means of equating the corresponding argument’s partial derivative to zero taking (2) 
into account. Extreme is reached with the condition 

( ) ( ) ( ) ( )( ) 1

0
0

0

2
0 ),(, −∫∫ −−=

t

an

t

n dTTJdJ ττττλττλα ,  (10) 

This way the problem has been reduced to ( )( )λαλ 0,Ô  function’s minimum search. 
The global minimum is achieved by the solving direct heat conductivity problem for 
sufficiently large set of λ  values. If this cannot be done for one of the surfaces the 
described procedure need to proceed for both outdoor structure surfaces, what would 
provide the global minimum of the “general probability functional”. It is a linear 
combination of (8) functionals for both surfaces of the outdoor structure. Linear 
combination factors’ values are situated at the (0,1) interval, a conclusion of 
“probable interval” inclusive the true value of heat conductivity can be done using 
them. 
 

 
Fig. 1. Typical temperature time series of 

the selected fixed zone. 

Fig. 2. “Probability functional” (8) 
implementation taking (9) into account 

within heat conductivity factor. 
The control duration of a typical 10-floor residential structure demands about 2-3 
hours. The computer measurement data processing and report preparation, including 
time of thermal images assembling, requires about 5-7 hours dependently on object 
complexity, on location measurement quality, existence of complete building project 
documentation and so on. 
Using algorithm given above a search of one of heat conductivity factors is carried 
out. Numerically obtained “probability functional” is presented at fig. 2 and heat 
transfer factors are presented at fig. 3. 

http://dx.doi.org/10.21611/qirt.2004.069



 I.7.5 

 
Fig. 3. Outdoor structure’s heat emission 
factors of the inner (value 3.7) and outer 

(value 13.7) surfaces with their 
dependency of the heat conductivity, 

calculated using (9). Probability functional 
for this case is presented at fig. 2. 

Fig.4. A typical thermogramm of outdoor 
guarding construction of a building. 

The dependence of the probability functional on λ  for a wall consisting of 
three layers is shown at figure 2. It follows from figure 2 that correct value of 
coefficient of thermal conductivity of heat insulation layer λ  is equal to 0.047 
Wt/(K*m). Having determined coefficient λ  (and therefore all thermo physical 
parameters of materials constituting the fragment under investigation) and of heat 
transfer coefficients 

outin ,α  one can straightforwardly calculate the thermal resistance 

of the wall’s fragment: 

∑
=

++=
N

n n

n

outin

l
R

1

11
λαα

       (11) 

where N is a total number of layers in the fragment. 
In order to calculate an average thermal resistance along the surface of the 

building one needs a spatial distribution of temperature on the surface of outer 
guarding construction of the building. To accomplish this task one must image a 
thermogram of the whole surface of the building by means of IR camera. The main 
problem with converting intensities of different points of surface into values of 
temperature at these points is that function providing such a conversion essentially 
depends on angle of shooting of a fragment and on the distance between the point of 
shooting and the fragment. This problem can be solved by setting thermosensors on 
few points of surface and following calibration of IR camera with known procedures. 

One has to use IR snapshots of the surface of guarding construction of the 
building in order to calculate its average thermal resistance. A thermogramm of 
surface of a typical investigated building is shown at figure 4.  

One can derive the thermal resistance )(rR  of an arbitrary fragment of 
constructions from the value of temperature of its outer surface T(r) by means of the 
formula: 

( ) 1))()(()( −−−= air
outout

air
out

air
in TrTTTrR α      (12) 

Using formula (15) we can easily calculate an average thermal resistance of guarding 
construction of the building under investigation: 

∫ ∫ −=
S S

av dsdsrRR 1)()(        (13) 

Here integration is extended on the all elements of surface of outer guarding 
construction and ds is the area of the element of surface. 
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The average thermal resistance of guarding construction of building is one 
of most significant characteristics of a building because it is this characteristic that 
defines how qualitatively the buildings preserve heat energy in winter.  
 
Discussion:  
 
Estimate reliability of applying such approach to determine heat engineering 
parameters of an abstract outdoor structure and discuss the field of it’s application. 
Laboratory investigations with usage of warmth chambers are usually used to solve 
this problem. But it has some important defects. Let’s consider solution of this 
problem by means of statistical examination of error with using of experimental data. 
Building constructions’ thermal NDT (the sampling includes more than 100 objects) is 
carried out in typical seasons – winter months, when required temperature pressure 
– air temperature difference indoors and outdoors is more than 100C – is provided. 
Reduces heat conduction for the whole building (formulae 11) depends only of 
specific weights of different sorts of walls and windows in consisting of the outdoor 
structure, formulae for it’s calculation can be represented in form of (usual averaging 
for conductivities – magnitudes inverse for the resistances): 

∑ ∑
= =

==
n

i

n

i
i

i

i w
R
w

R 1 1
11 , (14) 

where summation is carried out for all sorts of walls and windows with their specific 
weights. n is total number of windows’ and wall’s types.  
But in practice a deviation from (14) is observed and more than that heat conduction 
resistance 

kR  becomes a function of location at the wall. This takes place as a result 
of changes in building technologies, different exploitation modes and so on. At the 
same time thе numerous factors exert influence onto the process of measurement, 
their regular account is practically impossible (for example flaw, indoors draught and 
so on). Therefore the reasons for real reduces resistance value differ from the project 
value. Bring in an assumption that measured and projected values are accidental.  
Consider following probabilistic model. Let probabilistic value ξ  be a measured 
value of heat conductivity resistance (14), η  – the same magnitude, declared by 
projecting organization. Allocation of fluctuating components  caused by necessity of 
statistical error account and does not depend of concrete object properties. Let’s 
consider the probability density of measurement results equals ( )ξP , the same 
probability density for the value of reduces resistance, declared by projecting 
organization is marked through ( )ηQ . Probability density acquired while measuring 

result ξ  and simultaneously for the project organization declares value of the 
reduced resistance η is stated through joint probability density ( )ηξ ,W : 
( ) ( ) ( )ηηξηξ QWW |, = , (15) 

where density of conditional probability ( )ηξ |W  is introduced. Conditional probability 
density can be estimated using mentioned experimental data. Let’s build a histogram 
of measured resistances turning out of declared ones, i.e. ( )ξη − . Difficulty with 
respect to difference between real resistances R0 for different objects is excluded this 
way – they would cancel by subtraction (fig. 5). 
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Fig. 5. Normalized histogram of the measured resistances’ tunes off from the 

declared ones and exponential distribution (17) approximation for it. 
It is stated that there are no selected resistance values and conditional probability 
depends only on ( )ξη −  difference. This method can be considered analyzing data of 
a set of objects. 
Let’s approximate fig.5 histogram with exponential distribution: 

( ) ( )ξηξηηξ −Θ





 −
−=

uu
W exp1| , (17) 

where u  is typical decrement scale and ( )xΘ  is a step function (1 at 0>x  and 0 
with other argument’s values). 
By means of numerical analysis, a value 49.0=u  has been found. Now it can be 
shown the mentioned absence of randomized values dependency – statement (17) 
depends on η , i.e. joint probability density (15) is not factored out, there is a 
correlation between random values. 
Let form ( )ηQ  be analogous the ( )ηξ |W  form. This way ( )ηQ  can be written as: 

( ) ( )RRQ −Θ





 −
−= η

ν
η

ν
η exp1 ,    (18) 

where ν  is a typical decrement scale. 
To determine one the following reasoning can be done. Let the probability of the 
resistance be declared within [ ]δδ RRRR rr +− 00 ,  range equals ε , where δ  is an 
admissible deviation. Then one can find ν  with the explicit form integrating (18) with 
the mentioned range: 

( )ε
δν
−

−=
1ln
R ,    (19) 

For the numerical estimation let’s use 2.0=δ , 75.0=ε  and 3=R  parameter values 
(these values are close to the often used ones). (19) results 43.0=ν . Mentioned 
above parameter values would be used further for the numerical estimations. 
This way, calculating integral (16) taking (17) and (18) into account, the explicit 
measurement results’ distribution function’s explicit form for the ( )ξP  measurement 
results can be found as following: 

( ) 






 −
+= −

ν
ξ

νξ
R

uP exp)( 1 . (20) 

Further let’s find average values and dispersions of the (18) and (19). For the 
declared project values of the resistances one can get following average and 
dispersion values from the (21): 
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( ) 22σ νηνη =+= R . (21) 

For the resistance values taken from the measurements the average and dispersion 
values can be written as following using (23): 

( ) 222σ νξνξ +=−+= uuR . (22) 

From the (21) and (22) comparison it follows that outdoor structure TNC gains more 
accurate averaged results compared with the declared resistance value (in the 
meaning of the averaged value taken from measurements is less shifted from the 
true value – the constant bias is smaller). But the (22) dispersion is a bit bigger than 
the (21) dispersion, and thus unitary measurements can gain a sufficient inaccuracy. 
Formulae (21) and (22) allow us estimate TNC method reliability using calculation of 
the ratio error: 

R
u

E
−

=
ν . (23) 

Ratio error for the parameters’ values mentions above equals 02.0=E . Value E−1  
is used wider and equals 0.98 for the considered parameter values. Thus, formulae 
(21), (22) and (23) permit to estimate reliability of the thermal nondestructive control 
method of heat engineering characteristics of the residential constructions’ and 
industrial buildings’ outdoor structures. 
 
Conclusions:  
 
The discussed approach for the inverse heat conductivity problem solution gains 
ability for determination of different heat engineering characteristics of the 
controllable object. The method proved to be reliable and high-productive for non-
destructive analysis of objects of different types. The primary advantage of this 
method is the possibility of examination in practice. 
Method described above is developed by Technological institute of energetic 
investigations, diagnostic and nondestructive testing "WEMO". This method was 
used for inspection of more than 200 buildings by request of Moscow Government. 
Corresponding technique have been certified by “State Standard” of Russian 
Federation and agreed with Department of Power Engineering of Russian Federation 
and “State City Technical Supervision”. 
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