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Abstract 
 
A new modification of the Angstroem’s method for thermal diffusivity 

measurement has been developed. This relies on the propagation of harmonic 
thermal waves with mean value equal to the ambient temperature. The diffusivity is 
evaluated by relatively simple processing of temperature data, acquired by infrared 
thermography. 

The evaluation is based on a mathematical model, in which the heat transfer 
coefficient at the specimen surface is assumed to be constant. This work is aimed at 
verifying that assumption. In particular, the effects of natural convection in air are 
investigated theoretically by numerical simulation. A strategy to improve the test 
procedure is finally outlined. 

 
1. Introduction 

 
A new technique for measurement of the thermal diffusivity has been 

developed, in collaboration between the DIMeC and the CNR-ITC Padova Section. 
The technique is a modification of the well-known Angstroem’s method, which relies 
on the steady-periodic propagation of thermal waves along a specimen to estimate 
the diffusivity of the tested material [1]. The novelty of the proposed modification is 
that harmonic thermal waves with mean value equal to the ambient temperature are 
induced in the specimen by means of a purposely developed source, based on the 
Peltier effect. This allows evaluating the diffusivity by relatively simple processing of 
surface-temperature data, acquired by infrared thermography. 

A cross comparison of the technique with other measurement methods gave 
promising results, showing the effectiveness of the approach to produce the thermal 
waves [2-6]. Accuracy and precision comparable with the standard flash method [7] 
were obtained. 

Further improvements seem to be possible, with especial regard to controlling 
the test conditions. In fact, the propagation of the thermal waves is affected by heat 
transfer at the surface of the specimen. The coefficient of heat transfer with the test 
environment, which includes the superposed effects of thermal radiation and air 
convection, is generally unknown, but its estimate is made unnecessary by the 
procedure adopted to evaluate the diffusivity. In the mathematical model on which 
the evaluation procedure is based, however, a homogeneous and constant value is 
assumed for the heat transfer coefficient. This is not so easy to accept, since strong 
buoyancy effects can be unset in the air around the specimen by the propagation of 
the thermal waves. Therefore, the assumption is verified in this work, investigating 
either radiation or convection. Particular attention is paid to the surface pattern of the 
convection coefficient, which is theoretically estimated along the thermal cycles by 
numerical simulation. A strategy to limit the start of buoyancy effects is finally 
outlined. 
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2. Mathematical formulation 
 
The Angstroem’s method is briefly described in the following for sake of 

completeness. A more detailed explanation is reported in [1-5]. 
Angstroem tested a long bar with small cross-section. One end of the bar was 

subjected to a periodic change of temperature, being alternately heated by a current 
of steam and cooled by a current of cold water, for equal time intervals. The bar was 
also allowed to exchange heat with an ambient at constant temperature. Assuming 
the temperature homogenous over the cross-section, the governing equation is: 
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where x is the coordinate along the bar (m), t is the time (s), T is the temperature (K), 
h is the heat transfer coefficient at the bar surface (W⋅m-1⋅K-1), P and S are the 
perimeter (m) and the area (m2) of the bar cross-section, αm, ρm and cm are the 
thermal diffusivity (m2⋅s), the density (kg⋅m-3) and the specific heat (J⋅kg-1⋅K-1) of the 
tested material, Ta is the ambient temperature. 

In general, the boundary condition at the bar end periodically heated and 
cooled can be expressed by a Fourier’s series. In connection with this, a steady-
periodic solution of Eq. (1), independent of the initial condition, always exists, but it is 
relatively complex and unpractical to be used for the estimate of the diffusivity. The 
solution is greatly simplified, however, if the boundary condition at x=0 is a perfectly 
harmonic oscillation of temperature about the ambient value: 

( ) ( )000 20 ϕπ∆ −+== ttsinTTt,xT a  (2) 

where t0, ∆T0 and ϕ0 are, respectively, the time cycle (s), the amplitude (K), and the 
initial phase (rad) of the temperature oscillation. The thermal cycle expressed by Eq. 
(2) can be obtained by a thermoelectric source based on the Peltier effect. The 
practical implementation of the source is described in [4,6]. 

The temperature at the farther end is not affected by the alterations at x=0 if 
the bar is long enough (virtually semi-infinite) and one has the boundary condition: 

( ) aTt,xT =∞→  (3) 

The steady-periodic temperature field yielded along the bar is [1]: 

( ) ( )000 2 ϕπ∆ −−+= − LxBttsineTTt,xT LxC
a  (4) 

Eq. (4) describes a harmonic thermal wave, exponentially decaying while it 
travels along the bar. The amplitude decay and the phase shift are proportional to the 
so-called thermal diffusion length, L, a characteristic parameter depending on the 
thermal diffusivity of the tested material, αm, and the period of the thermal input, t0: 

πα 0tL m=  (5) 

The effects of heat transfer with the ambient are included in two parameters, 
B and C, respectively affecting the phase and the amplitude of the thermal waves: 

( ) ( ) ( ) ( )22
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Both parameters depend on an external relaxation time te, defined as follows: 
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The diffusivity can be estimated from the thermal diffusion length, L, which 
can in turn be calculated from the phase shift, ϕx, or from the logarithmic amplitude 
decay, ∆Tx. Two apparent values of the diffusivity, αm,B and αm,C, are obtained: 
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The apparent values are related to the actual one by two unknown factors, 
1/B2 (>1) and 1/C2 (<1), both depending on heat transfer at the specimen surface. 
The true diffusivity can nevertheless be calculated by combining αm,B and αm,C: 

C,mB,mm ααα =  (11) 

 
Fig. 1. Impact of heat exchange with the test ambient on the diffusivity estimate. 

Heat exchange with the ambient may be made negligible, and both 1/B2 and 
1/C2 made about equal to unity, by choosing a time cycle t0 much smaller than te (Fig. 
1). This would yield values of apparent diffusivity equal to the actual one. In practice, 
the thermal inertia of the thermoelectric source, combined with the effects of 
convection and thermal radiation, imposes relatively large values of the ratio t0/te. 
Therefore, Eq. (11) must generally be used. On the other hand, Eq. (11) has been 
obtain under the hypothesis of homogeneous and constant value of the heat transfer 
coefficient, h. The correctness of that hypothesis is verified in the following. In 
particular, thermal radiation and convection with air, whose superposition yields the 
total heat transfer between specimen an test ambient, are separately investigated. 

 
3. Impact of heat transfer with the test ambient by thermal radiation 

 
In the proposed measurement technique, the specimen is placed in a test 

ambient bounded by solid walls, as sketched in Fig. 2. The wall temperature can be 
easily maintained homogenous and equal to the ambient temperature, Ta. 

Air is transparent to thermal radiation. Therefore, the (plane) surfaces of the 
specimen exchange heat by radiation only with the walls of the test ambient. If the 
walls are coated black, reflection problems can be avoided and, above all, the rate of 
radiation heat transfer per unit surface can be evaluated by the relationship: 

( ) ( ) ( )arar TThTTTq −≅−=′′ 44
0σε  (12) 
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where ε is the surface emissivity of the specimen, σ0 is the Stefan-Boltzmann 
constant (equal to 5.670x10-8 W⋅m-2K-4), T is the local (surface) temperature of the 
specimen (K). The dependence on T and Ta has been made linear in Eq. (12) by 
introducing a heat transfer coefficient by radiation, hr, defined as follows: 

( ) ( )( )aar TTTTTh ++= 22
0σε  (13) 

In principle, hr depends on T explicitly and through the temperature 
dependence of ε. The latter can be neglected, however, if the amplitude of oscillation 
of T about Ta is small. This also allows equaling hr to its mean value, hr,mean: 

3
04 amean,rr Thh εσ=≅  (14) 

Fig. 3 shows that the relative deviation of hr from its mean value is always 
within 10% for Ta above 300 K and ∆T0 below 20 K – conditions typically verified in 
the proposed measurement technique. Moreover, the deviation is positive along half 
cycle, negative in the other half, and its average value is about null. This suggests 
that fluctuations of hr are likely to have small or negligible impact on the phase shift 
and the amplitude decay of the thermal waves. Overall, it seems reasonable to 
assume homogeneous and constant the value of the radiation heat transfer 
coefficient and made it equal to its mean value, estimated by Eq. (14). 

 
Fig. 2. Test ambient and bar specimen (longitudinal section). 

 
Fig. 3. ∆hr/hr,mean=(hr-hr,mean)/hr,mean, vs. (Ts-Ta), for different values of Ta. 
 

4. Impact of convection in air within the test ambient 
 
The propagation of the thermal waves promotes buoyancy effects in the air 

around the specimen. As a result, heat exchange by convection, superposed to heat 
exchange by radiation, occurs between the specimen and the test ambient. The heat 
transfer coefficient h in Eq. (1) can thus be calculated as the sum of the radiation 
component hr, defined by Eq. (13), and a component due to natural convection, hc. 
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Differently from hr, however, hc cannot be easily assumed to be homogenous and 
constant, since it is affected in an unpredictable manner by the unsteady distribution 
of temperature along the specimen. Moreover, the local value of hc cannot be 
calculated by analytical relationships. In fact, with transient natural convection, the 
only way to estimate theoretically the surface pattern of hc is by numerical simulation. 

In this work, a parametric analysis has been carried out by numerical 
simulation, using a finite-volume based ‘projection method’, accurate to the 2nd order 
in both space and time [8]. The physical problem that has been investigated is a 
rectangular cavity filled with air, representing each one of the two enclosures in which 
the test ambient is split by the immersed bar specimen (Fig. 2). The time-evolution of 
the temperature pattern expressed by Eq. (4) has been imposed at the boundary 
representing the specimen surface, whereas Ta has been imposed elsewhere. A 
cavity with length Lc much greater than the height Hc has been considered, to 
assume the enclosures to be virtually infinite along the direction of wave propagation. 
Moreover, either the enclosures or the specimen have been assumed to be virtually 
infinite perpendicularly to the section in Fig 2. This hypothesis is not completely 
realistic, but it makes the problem two-dimensional and computationally more 
affordable. Anyway, the simplification is adequate to the objective of this work, where 
the focus is more on the dynamics of natural convection than on its exact evaluation. 

By dimensional analysis of the equations that govern natural convection in 
test ambient, it can be shown that, for a given material under testing, the distributions 
of velocity and temperature in air depend exclusively on the ratio between Hc and the 
thermal diffusion length, L, and on two other dimensionless parameters, the Grashof 
number, Gr, and the Prandtl number, Pr. These are defined as: 

2
0

32 µ∆βρ TLgGr =                λµ pcPr =  (15,16) 

where g is the gravity acceleration (equal to 9.81 m⋅s-2), ρ, β, µ, cp, and λ are, 
respectively, mass density (kg⋅m-3), the thermal expansion coefficient (K-1), the 
dynamic viscosity (Pa⋅s), the specific heat at constant pressure (J⋅kg-1⋅K-1) and the 
thermal conductivity (W⋅m-1⋅K-1) of the air in the test ambient (average values). 

Pr is a physical property of air and it is about constant during an experiment. 
Therefore, the numerical analysis has been focused on Gr and the ratio Hc/L. 
Moreover, since the dependence on Hc/L has been observed to be negligible for 
values of the ratio above 3, a limit below which it is practically difficult to work, 
convection is actually controlled by the Grashof number alone. 

Overall, the simulation demonstrated that, during the first half cycle, a vortex 
is produced in each enclosure, in the air near the region where the thermal waves 
are applied to the specimen. In the following half cycle, a new counter-rotating vortex 
is produced. The previous one is pushed away along the specimen and quickly 
vanishes. The streamlines show that the flow field in each enclosure is mirrored in 
the other one after half cycle, and it is already steady-periodic at the second cycle. 

The dimensionless convection coefficient along the specimen surface is 
expressed by the Nusselt number, Nu, defined as: 

λ/LhNu c=  (17) 

The patterns of Nu calculated along the specimen are shown Fig. 4. On the 
left, different time instants of a cycle are considered. The patterns are clearly 
irregular in time and space, even if the peaks occur when heat transfer is about null 
(Ts≅Ta). On the right, different values of Gr are considered. Nu decreases with 
decreasing Gr, approaching progressively the case of pure diffusion (i.e. with 
convection suppressed). The control of Gr is therefore desirable. 
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Fig. 4. Nu(x/L) vs. t/t0 (left, Gr=2658, Hc/L=3) and vs. Gr (right, t/t0=1.25, Hc/L=3). 

For given values of ∆T0 and t0, imposed by the inertia of the thermoelectric 
source, the definition in Eq. (15) suggests that Gr can be reduced by increasing the 
viscosity, µ, or decreasing the density, ρ, of the air. Both ones depend on Ta, but this 
is usually specified. Only ρ , however, is affected by pressure. In particular, ρ 
decreases with decreasing pressure. Convection can thus be limited by working 
under vacuum. From the results summarized in Fig. 4 one obtains that a moderate 
vacuum (0.8-0.9 bar) is enough to make convection smaller than radiation (hc/hr<0.2). 

 
5. Concluding remarks 

 
Convection in air, which is controlled by the Grashof number, was shown to 

produce an inhomogeneous and unsteady heat transfer coefficient. This is not 
desired in the Angstroem’s method. Convection effects, however, can be reduced by 
working under moderate vacuum. This approach is currently being tested. 
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