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Abstract 
 

A unified (information) approach to the development of an optimum algorithm 
of thermal tomography on the basis of the available prior information has been 
designed. The essence of the new criterion is the minimization of the complexity of 
the description of experimental results. It increases a resolution of thermal 
monitoring by several folds. The problem of the testing of delamination in a 
multilayer object is considered as an example of usage.  The capability of detection 
and determination of delamination borders is shown; if its size is much smaller than 
the depth and thermal resistance is small. 
 
1. Introduction 

 
The development of thermovision engineering allows one to solve the 

problem of thermal tomography, in addition to thermal non-destructive testing and 
defectometry problems. Currently, the basic method employed in practice is the 
pulse thermal tomography. As a matter of fact, the one-dimensional model of a heat 
flux is used in it. Only one parameter - the depth of location of a not heat-conducting 
imperfection is determined. Thus only a small part of the information about interior 
structure of the monitored object contained in thermovision film is used. The purpose 
of this work is the development of a new universal method of solving the thermal 
tomography problem. It is based on full usage of both the thermovision information 
and prior information on the object of monitoring. Mathematical techniques of 
algebraic information theory (“the theory of complexity”) [3] allow for solving this 
problem.  

 
2. The essence of the method 

 
The problem of the testing of delamination in a multilayer object is considered 

as an example of usage. Any local non-uniformity of thermophysical properties of the 
object of monitoring (imperfection) can be represented by an equivalent heat source 
and heat dipole, distributed accordingly in a volume and on a surface of this non-
uniformity [1]. The power of an equivalent heat dipole is proportional to the thickness 
of an air interlayer and power of a heat flux. Thus, the thermal tomography of 
separations is reduced to determination of a map of thermal dipoles located on one 
of given boundaries of layers. In the elementary stationary case of two-dimensional 
model, the temperature response to the surface of the object can be calculated as 
follows: 
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where )( xGi  is the thermal transfer function of i  layers placed above the assigned 
equivalent thermal dipole of power )( xqi ; )( xTsδ  is additive noise with a known 

spectrum; ∗  stands for convolution. Thus the problem of the determination of )( xqi  

from known )( xT  and )( xGi  is ill-posed.  
A major problem that appears in the process of the solution of the above- 

mentioned inverse task is a choice between regularization criteria. With this purpose, 
many known methodologies use a priori information about a signal and a noise 
component. As a rule, this component is the noise amplitude. In the case of a 
stochastic signal, this can be information about the spectrum of the signal and noise 
(i.e., optimum spectral filtration method).  

We can state that in these and other cases, they actually minimize complexity 
of description of experimental results, which are set up at a definite accuracy. 
Hereby, a priori information is required at choice for description- algorithm. Hence, in 
particular, follows a minimization criterion for root-mean-square deviation for the 
case of normal distribution of the noise component, Shannon’s formula for random 
signal entropy evaluation and many others. 

For this reason, the principle of minimized complexity of the description of 
experimental results can be used as a universal criterion for optimization of the 
solution of the inverse task. (By the way, this method is an integrated principle of 
entropy maximum). Hereby, a priori information on signals or noises can be 
considered as additional preliminarily obtained experimental results. 

If a tested object is assumed to be a multilayer plate with delamination, such 
information can include profile (probably, rectangular, Gausse-tipe) of delamination, 
depth of location for every individual layer, etc. 

The practical accessibility of different estimations of a thermal monitoring 
resolution depends on the available prior information. So, for example, usage of the 
information that the defects are small local patches on given depth (can be 
described by δ  - functions), allows to increase a resolution of thermal monitoring by 
several fold. The results of the computer experiments with two small defects are 
shown in figure 1.  

 
3. The pulse thermal tomography 

 
The essence of the pulse thermal tomography is the harmonic heat action at 

the object surface and the measurement of the phase lag of  its temperature. The 
results of the testing are the thickness of the plate or the depth of the delamination. 
Let's note that the method of pulse thermal tomography solves the problem of the 
delamination defectometry when the sizes of local separations exceed their depth, 
and the thermal resistance of separation exceeds thermal resistances of above 
located layers.  

The solution of the heat transfer equation for the uniform plate by the heat 
transfer function method gives a constraint on the space time spectrum of the 
temperatures ),,(1 τyxT , ),,(2 τyxT  and heat fluxes ),,(1 τyxq , ),,(2 τyxq  at 
the both surfaces of the plate [2] 
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where 2121

~,~,~,~ qqTT   are obtained with Fourier transform; 
222 / yx wwawik −−⋅−= ; )/( ρλ ca = . We can see that the ratio of the heat flux 

and temperature spectrum at the different depths is connected with Eq. (3).  
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For the one–dimension model and 02 ≡q  (non-heat-conducting 

delamination) Eq. (3) transforms to the phase lag equation 
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That’s just what is used in the majority methodic of the pulse thermal 

tomography for the ),( yxh determination.  We can allow for the heat exchange at 
the surfaces of the plate by the following equation: 
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where 1α  and 2α  are the effective coefficients of the heat transfer at the heated 
surface and the surface of the defect, respectively. 

We can’t use the one-dimension approximation in the general case. For 
example, let us consider a thin delamination with the varying thickness ),( yxd , 

 
),(),(),(/),(),(),( 22 yxRyxqyxyxdyxqyxT dd ⋅=⋅= λδ ,      (6) 

 
where  ),( yxTdδ  is the temperature drop at the delamination; with ),( yxR  being  
its heat resistance. The region behind the delamination is assumed to be 
homogeneous and thick enough. Then the spectrum of the temperature as a function 
of the heat flux spectrum at the boundary of this region is  
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From Eqs. (2), (6) and (7) we obtain 
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where [ ])sin(),(),( 1
12 khkFyxTyxq ⋅∗= − λδδ  is the heat dipole which is 

equivalent to the delamination;  ),(),(),( 11 yxTyxTyxT nd−=δ  is a complex 
valued temperature drop at the surface of the tested object, which is caused by 
delamination, ),( yxTnd  is the temperature at the surface of the non-defect object. 

The tasks of the ),( yxTdδ  and ),(2 yxqδ  determination are the inverse ill-
posed problems. One of the regularization methods is used for them. The 
information on the phase lag ),( yxδϕ  alone is not enough in the two–dimensional 
problem.  That is why the nonuniformity of the surface is the main factor of the 
sensitivity of the thermal testing method.  In this case the inverse task transforms to 
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or as in Eq. (1)   
ε
δεδδ ⋅−∗= ),(),(),(),( 11 yxTyxTyxGyxT dh   (10) 

 
For the stationary thermal testing method )0( =w  we have the familiar 

result [ ]22exp),( yxyxh wwhwwG +−= . The high frequencies of the signal decay 

exponentially with the distance and the information on the delamination shape is lost. 
 

4. A priory information as the part of the reconstruction method 
 
The new criterion is the “minimization of algorithmic complexity of description 

of experimental data including all available prior information". Thus prior information 
can be formalized and represented by a set of coding algorithms. They are used as 
the components at build-up of a procedure of the inverse problem solution.  

At first, let us consider the main optimization criterion for the ill-posed 
problem. With regard to )( xi wq , solution of (1) takes the form 
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Now, we can see that parameter )( xwα  is responsive to influence of noises, 

because in their absence, it will turn to zero. However, we cannot calculate this 
parameter precisely unless we obtain the task solution. In the evaluation of the 
solution according to the above formula, required a priori information is used. The 
expression [ ] 1)(1 −+ xwα  is known as the stabilizing multiplier. Its purpose is to 
neutralize an effect of solution- instability, owing to growth of multiplier at elevation of 
frequency. Tikhonov has shown that for convolution- type equation, a set of 

stabilizing multipliers of common form, such as: ∑
=
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minimization of functional equation: 
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where the former component is proportional to R.M.S. deviation and the latter is to 
compensate for large values of amplitude and derivatives from the obtained solution. 
In this manner, choice of algorithm for regularization of non- correct task- solution is 
based on a priori- information on smoothness and limits of desirable solution. Thus 
this algorithm of regularization can be represented as a particular case of the new 
universal criterion. 

We can take account not only of the spectrum properties of the signal and the 
noise but of any prior information on them also with the new criterion.  We calculate 
the minimized functional equation as 
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The function of the complexity calculation “Comp” is varied with the kind of 

the priory information. The accuracy of ),( yxq  description is the varied parameters 

of the function “Comp”, but the accuracy of ),( yxT description is an input 
parameter. The requirement of uncancellability of description complexity of input 
data for a direct problem is available to a minimum of information criterion (in 
practice this requirement is equivalent to lack of unaccounted regularities in 
description of real monitored object properties). 

The procedure of the solution of a thermal tomography problem by 
information method includes the following points: 

- To formalize the solution of a direct problem - mathematical model of non 
destructive testing process (the previous part of this report for example) 

- To develop the algorithms of optimum algorithmic description (“Comp” 
functions) of all data necessary for the solution of a direct problem (as required 
parameters of object of monitoring, and parameters of the defects, and noise); 

- To develop the minimization algorithm of complexity of the thermal 
monitoring data; 

- To develop the algorithm of the thermal testing parameters optimization. 
 

5. Results of the numerical simulation 
 
The capability of the detection and determination of delamination borders and 

width as functions of coordinates is illustrated in figure 2 (compared with other 
methods). 
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a) b) c) 

Fig. 1 The resolution of thermal nondestructive testing  
 
a) the raw registered signal makes 1.7 of the depth of local defects  
b) the result of the inverse problem solution by Tihonov regularization method 

makes 0.6 of the depth of local defects 
c)  the solution obtained in view of the information on the shape of the defects 

makes 0.2 of the depth of local defects  
                                                                    (a noise level is equal to 5 %). 
 
 

a)  b)  

c)  d)  
 

Fig. 2 The restoration of the shape of the delaminating  
 
The width of the delaminating is equal to its depth. 
a) Noise level is equal 0. The results of the restoration by Tihonov regularization 

and “Comp” methods. 
b) Noise level is equal 5%. The result of the restoration by R.M.S. minimization 

method. 
c) Noise level is equal 5%. The result of the restoration by Tihonov regularization 

method. 
d) Noise level is equal 5%. The result of the restoration by “Comp” method. 
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