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Abstract 
In this contribution a technique for measuring motion and parameters of 

temperature change locally in thermal image sequences will be presented. This leads 
to the estimation of highly accurate optical flow and parameters of heat transport, 
such as the constant of diffusivity or the matrix of anisotropic diffusion. Results of the 
computation are shown on a number of sample applications. 

 
1. Introduction 
Thermographic techniques are widely used for non-destructive testing of new 
materials. These methods have several advantages over other techniques in that 
they allow for an inspection of relative large surfaces in short time frames. At the 
same time they offer a robust and reliable detection of defects. Although presenting a 
number of advantages in the field of NDT, most current techniques are limited to 
static objects. The reason for this restriction is that motion is not taken into 
consideration. As an example one might want to look into Lock-In thermography. 
Here a time series is recorded and a Fourier transform performed at every pixel. 
Obviously, this technique only makes sense if it is assumed that the scene location 
mapped onto one pixel remains there during the duration over which the Fourier 
transform is computed. Otherwise the amplitude and phase information would be a 
mixture of those from different locations of an object or worse still, from different 
objects. 
 
For a number of potential applications, the observed materials can not be made to 
remain still during image acquisition. This might be due to the movement of objects 
on a conveyor belt in industrial applications. Moreover, the observed effect in 
materials might be due to movement itself, such as the thermo-elastic effect. Here a 
temperature change is induced by compressing or depressing a material, which can 
be induced by bending it. By estimating the image velocity, motion compensation can 
be performed. This allows warping of thermal images, making pixels in subsequent 
frames to correspond to the same object location. 
 
Due to physical transport processes, the objects under observation will change in 
temperature. This change has to be taken into account when estimating its motion. 
The transport of heat can usually be described by a differential equation, which turns 
out to be the diffusion equation in the case of heat transport due to conduction. By 
incorporating this model into the equation of motion, not only can the object velocity 
be estimated very accurately, but also the parameters of heat transport. In the 
following sections it will be demonstrated how image velocity and the constant of 
diffusion, or the in the case of anisotropic diffusion the whole matrix of diffusivity are 
accurately retrieved in a single estimation step. Since the estimate is performed on a 
small spatial temporal neighborhood of the image pixel of interest, both temporally 
and spatially highly resolved measurements are obtained. These estimates of the 
constant of diffusion are highly accurate and limited only by the frame rate and 
resolution of the infrared camera. 
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2. Deriving the optical Flow from Image Sequences 

 
 

Figure 1: Illustration of the brightness change constraint equation. A one 
dimensional grey value distribution moves along the x-axis. In a constant brightness 

is violated due to a diffusion process. In b an actual IR Sequence is shown. 
 
A very common assumption in optical flow computations is the brightness change 

constraint equation (BCCE) [1]. It is assumed that the image brightness of a scene 
point remains constant in a spatio-temporal neighborhood. That is the image intensity 
g at the location (x,y) at time t stays the same in a time interval t∂  during which a 
translation by ( ),x y∂ ∂  took place. This brightness constancy model can be 
formulated as 

( ) ( ), , , , .g x x y y t t g x y t+ ∂ + ∂ + ∂ =
                     

(1)
 

[2] proved that this assumption holds provided that no illumination changes are 
present and the surface of the object are Lambertian in nature. 

 
Clearly this assumption does not hold in most real world situation, which is 

especially true for thermographic applications. In thermography, the temperature 
distribution of scene objects is visualized. Frequently the temperature of these 
objects changes due to diffusion processes, leading to a change in image intensities. 
Obviously this brightness change is not connected to any motion, thus violating the 
assumption of brightness constancy. This effect is illustrated in figure 1. Here iso-
brightness lines are not corresponding to the movement any more. To accommodate 
this fact an extension to the used conservation law has to be formulated. The use of 
a linear model with a multiplier and offset term has been suggested [3]. Here we 
follow [4;5] in reformulating the brightness change as a linear partial differential 
equation. 

 
The brightness of a moving pattern is allowed to change according to an 

analytical function h where ( )( ),h g x b
GG

 is a scalar invertible transformation with 
the q-dimensional parameter vector ( )T

1, , qb b b=
G

… and the identity element 
( )( ) ( ),0h g x g x=
G G

. The total derivative of the grey value is then given by 

( ) ( )( ) ( )( ) ( )( )' , ,  with  ' , ' , .t
dg u g f g x b f g x b h g x b
dt

+ ∇ = =
G G GG G G G

 (2) 

With the formulation of the generalized brightness change constraint equation 
(2) it is now possible to estimate reliable optical flow in the presence of intensity 
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changes. Moreover, in scientific applications the image intensity change might be 
due to physical phenomena, the parameters of which can be estimated reliably from 
equation (2). This type of equation can be solved locally in an over determined 
system of equations in a total least squares sense [6]. This is done by assuming 
constant parameters in a local neighborhood and pooling the constraints for each 
pixel. Examples of this new field of problems will be presented in the next section. 

 
In equation (2) the motion vector is modeled as that of a rigid body. In fluid 

motion this might not always be adequate. Often the velocity field uG  is represented 
in a local neighborhood by an affine flow model [7;8]: 

 1 21

3 42

.
a at x

u t x
a at y
    

= + = +     
    

A
GG G

 (3) 

Here t represents the center velocity of the neighborhood. The parameters of the 
affine transformation matrix A can be used directly to estimate convergence and 
divergence of the flow field. This model is a superposition of uniform motion, rotation, 
dilation and shear. It is of great interest in applications such as the estimation of the 
flow field at the sea surface, where divergences are important parameters in sea 
surface gas exchange. 

3. Applications 
 
In the preceding sections a framework was presented for simultaneously 

estimating the parameters of optical flow and brightness changes. These estimations 
are highly relevant for a number of applications, some of which will be presented in 
the following. 

3.1 Estimating the total derivative at the air water interface  
 
The total derivative of the sea surface temperature with respect to time dT/dt is an 

important quantity in air-sea heat exchange. From this derivative the net heat flux can 
be derived [5]. It is given by ( )/ /dT dt T t u T= ∂ ∂ + ∇

G
where T is the sea surface 

temperature and T
1 2( , )u u u=

G
 the surface flow. By comparing this equation with 

Equation (2) it becomes apparent, that d / dT t  can be modeled by a linear source 
term, that is 1 2t x yg u g u g c+ + = . 

 

 
 
Figure 2: An image from a sequence with the corresponding 2D optical flow and 

the total derivative of the temperature. 
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The problem is solved by extending this constraint equation onto a local 

neighborhood, yielding one equation per pixel. Solving this system of equations in a 
total least squares sens, the right singular vector ( )T

1 2 3 4, , ,e e e e e=
G

 to the 
smallest singular value λ of the data matrix D in  

             

,1 ,1 ,1

,2 ,2 ,2 1

2

, , ,

1
1

0

1 1

x y t

x y t

x n y n t n

g g g c
g g g u

D p
u

g g g

−   
   −   ⋅ = ⋅ =   
    −   

# # # #

 

(4)

 
represents the sought solution to the problem. The full parameter field for one image 
of a sequence is shown in figure 2. The total derivative 1 4/ /dT dt c e e= = and the 
surface flow ( )TT

1 2 2 4 3 4( , ) / , /u u u e e e e= =
G

 and the can thus be estimated. 
 

3.2 2D flow with affine parameterization 

 
Figure 3: The divergence estimated for the infrared sequences. In a an image 

recorded at a wind speed of 2 m/s can be seen with the corresponding divergence in 
b. The same is shown in c and d for a wind speed of 4.2 m/s. 

  
In section 2 the extension of the constant flow model to affine model was 

introduced. In terms of modelling actual physical processes the affine flow model is 
highly relevant. In a number of processes the affine matrix A from Equation (3) is 
an important quantity. In oceanographic applications, divergence and convergence at 
the sea surface present an important parameter in air-water gas and heat exchange. 
At the sea surface a source term is still required as stated in the previous section. 
The set of equations solving this optical flow problem can be formulated as 

1
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(5)

 
As explained in section 2 the neighborhood center velocity is given by 

T
1 2( , )u u u=

G
. Results of this computation are presented in figure 3. 
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In botanical application, where the growth of plant leaves or roots is of interest, 
the divergence can be estimated directly and the regions of growth quantified [9]. 
Due to constant illumination the source term c in equation (5) can be removed 
together with the first column of the matrix, resulting in 7nD ×∈\ and 7p∈\ . 

 
It should be emphasized that because of the projective properties of the imaging 

system movement of objects in the line of sight of the camera also lead to an 
apparent divergence. The distance of the object to the camera has to be kept 
constant, or the change thereof has to be measured as well, if physically meaningful 
divergences are to be deducted from the estimation. 

 
3.3 2D Flow with Isotropic Diffusion 

 

 
 

Figure 4: Isotropic diffusion of heat in a polymer heated with a laser. In a and b 
two frames of the sequence are shown and in c the computed diffusivity and motion. 

 
Isotropic diffusion is a phenomenon commonly associated with heat. The 

corresponding set of equations is given by 

1 ,1 ,1 ,1

2 ,2 ,2 ,2 1

2

, , ,

0.

1

x y t

x y t

n x n y n t n

g g g g D
g g g g u

u
g g g g

−∆   
   −∆   ⋅ = ⋅ =   
    −∆   

D p
# # # #

 

where D is the constant of diffusion and ( )2 2 2 2/ /i i ig g x g y∆ = ∂ ∂ + ∂ ∂  is 
the Laplace operator of the i-th pixel. 

 
In figure 4 an example of such a process is presented. A slab of polymer is 

heated up by a laser. The heating is turned off an the heat transported in the polymer 
by heat diffusion. The estimated constant of diffusivity can be compared to that of the 
polymere. 

3.4 2D Flow with Anisotropic Diffusion 
The case of a direction dependant two-dimensional diffusion can be modeled by ( )1 2 0,x y tg u g u g D g⋅ + ⋅ + −∇ ⋅∇ =  with the anisotropic diffusion tensor D.  
This tensor is given by 

(6) 00 01 00 10

10 11 10 11

,
d d d d

D
d d d d
   

= =   
   
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Figure 5: In a a printed circuit board is heated up. Image velocity and the diffusivity 
matrix are computed for the highlighted region in b, the results are displayed in c. 

where use was made of the fact that the diffusion tensor D is a symmetric tensor. 
Inserting this expression into the constraint equation leads to: 

 
 
 
 

(7) 
 
 
 

 
An example of anisotropic diffusion of heat is shown in figure 5. Here a printed 

circuit board is locally heated up. Due to different materials making up the compound, 
heat is transported differently at different parts of the board. 
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