TECHNOLOGY OF NON DESTRUCTIVE CHECK UP IN INDUSTRY

George Kurilenko, Michael Sazonov, Nicolay Troitsky

Novosibirsk State Technical University, K. Marx Av., 20,,630092, Novosibirsk, Russia Tel.: 007 3832 461777 Fax: 0073832 460301 E-mail: <u>art@mail.fam.nstu.ru</u>

Keywords: crack resistance, non destructive check, thermographic approach, entropy.

Use thermographic parameters of fatigue development becomes possible realization of actual engineering problem, namely: manages or not given real detail to work indented cyclic lifetime.

At first, we defined the level of control stress σ_c . For that purpose the individual fatigue limits σ_r for some details (control part) of given technological level production are defined. After that we made statistical treatment of received results and as the control stress σ_c accept the lower level of fatigue limit, calculated with given confidential probability (as a rule, it is accepted 95th% or 90th% confidential probability).

Then we test real detail on the level σ_c (the time of cyclic loading is very small) and calculate the increment specific entropy ΔS^{1c} for one cycle of oscillation by the formula:

$$\Delta S^{lc} = c_v \ln \frac{T_2}{T_1},\tag{1}$$

where c_v is the specific heat capacity of material;

 T_2 and T_1 are the temperatures on the surface of the domain of damaging at the end and beginning of a particular cycle.

After that we test on the level σ_c those details from control part which have individual fatigue limits σ_r not less than σ_c

$$\sigma_r \geq \sigma_c$$

and calculate the values ΔS^{1c} by formula (1).

As a result the critical value of increment specific entropy for one cycle of oscillation ΔS_{cr}^{lc} is defined as upper statistical level ΔS^{lc} .

The real detail recognizes suitable if after its testing on the level of control stress σ_c we have:

$$\Delta S^{\rm lc} \leq \Delta S^{\rm lc}_{cr}.$$

The method described has some advantages in comparison with traditional approaches. These advantages come from its higher accuracy, efficiency and universal applicability.

The practical implementation of the proposed thermographic method could be made using up-to-date infrared equipment.

This method is successfully used in the inspection of cyclic durability of real parts: shuttle springs and torsion shafts of loom.