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Abstract: 
 

Infrared thermography gives valuable information useful to observe, understand and model the 
thermomechanical behaviour of solids. The theoretical framework of standard materials is used to 
define the different heat sources induced by a deformation process. These sources are estimated from 
infrared data by using the local heat equation. The image processing involves Fourier techniques and 
its reliability is studied using spectral methods. An example of thermomechanical analysis of a 
rubberlike material illustrates the great interest of infrared data for improving behaviour models. 
 

1. Introduction 
 

Mechanics of materials is nowadays a very active research field. It deals with the 
behaviour of solids. From a theoretical viewpoint, the behaviour is represented by a set of 
constitutive equations which supplement the balance relations (mass, movement, energy). 
From a more practical viewpoint, these equations are essential for engineers trying to 
optimise a stamping process, to design a mechanical part, to predict the life span of a 
component. Together with boundary conditions, the phenomenological equations represent 
the whole "physics" integrated into a computational code. Taking into consideration the 
constant efforts carried out by many research centres to extend the reliability of models [1,2], 
the point of view exposed hereafter consists in analysing the material behaviour both 
thermodynamically and mechanically [3,4]. 

 
The deformation of solid materials is accompanied by dissipative effects. Irreversibility, 

whose nature depends on the behaviour of the material, results in an intrinsic dissipation of 
energy due to plasticity, viscosity or damage. It may also be due to thermal dissipation 
induced by heat diffusion and generated by thermomechanical couplings associated with 
thermoelasticity, rubber elasticity or first-order phase transition. The temperature variations 
produced by these volume heat sources depend not only on the diffusivity of the material, but 
also on the boundary conditions. Thus, the thermal data are not completely intrinsic to the 
material behaviour. Techniques of infrared image processing were then investigated in order 
to take into account the heat diffusion and to estimate, under certain conditions, the 
distribution of heat sources during a deformation process.  

 
After recalling the form of the energy balance, the numerical methods of data processing 

will be briefly presented. In the case of a homogeneous test, it is possible to draw up an 
energy balance useful for constructing behavioural models. As an example, the analysis of 
thermomechanical data extracted from tests performed on a rubberlike material will be finally 
proposed. The data analysis will show that the internal energy of such a material is a function 
of absolute temperature only, as soon as the rates of given-off heat and of mechanical work 
become equal. This result is a basic hypothesis of classical models of rubber elasticity and is 
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generally justified by considerations at a molecular scale. Here it is experimentally evidenced 
at a continuum scale. 
 

2. Thermomechanical framework 
 

We work in the framework of classical thermodynamics of irreversible processes. It 
assumes the local state axiom [5,6]. Classically, we characterise the equilibrium of a volume 

element by the absolute temperature T, a strain tensor  and a vector  whose the n scalar 
components complete the description of the equilibrium state. 

If  and s denote respectively the specific Helmholtz free energy and the specific entropy, the 
Clausius-Duhem inequality, derived form of the second principle of thermodynamics, defines 
the dissipation d as 

0..::  T
T

d grad
q

D    , (1) 

where  is the Cauchy stress tensor, D the Eulerian strain rate tensor,  the mass density, q 
the heat influx vector. The dot stands for the material time derivative. The equality d=0 then 
characterises reversible thermodynamic processes. Classically, the intrinsic (mechanical) 
dissipation d1 and the thermal dissipation d2 are supposed to be separately positive. They are 
respectively defined by 

0.::1    Dd ,  (2) 

0.2  T
T

d grad
q

. (3) 

Per unit volume, the intrinsic dissipation d1 is the difference between the rate of deformation 

work D:ext w  and the elastic and stored energy rates    ..se   ww . The 

symbol  means that the variation of   is path-dependent. 

Deduced from both principles of thermodynamics, the local heat conduction equation reads  

eT,T, .:div 1 rTTdTC     q , (4) 

where C denotes the specific heat capacity while re symbolises the external heat supply. The 

intrinsic dissipation d1 and the thermomechanical coupling terms   :T,T  and   .T,T  

have been gathered in the right hand member of (4). For materials considered here, the Lord 

Kelvin’s term   :T,T  represents the volume heat rate due to thermoelastic couplings. 

Taking into account an isotropic conduction of heat (q = -k gradT), we underline that the left 

side of Eq. (4) is a partial derivative operator applied to temperature. Its estimate leads to a 

local determination of heat sources. 

 

3. Experimental set-up and image processing  
 

The experimental set-up involves a 100 kN tension-compression testing machine coupled 
with an infrared camera (Agema 880 sw). The lens axis of the camera is kept fixed and 
perpendicular to the sample surface[7]. The main object of the data processing is to derive 
the distribution of heat sources from surface temperature.  

In what follows, the case, specific but important in practice, of thin and flat parallelepipedic 
samples will be considered. For such a simple geometry, the temperature gradients 
throughout the sample thickness are assumed to be small. The heat sources are then 
determined by evaluating the left side of Eq. (4) depth-wise averaged. A thermal image 
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contains typically 256200 pixels. The pixel surface is around 0.04 mm2 in the optical 
conditions of our tests. The thermal data being discrete and noisy, the differential operator is 
estimated by using low-pass filtering, properties of discrete Fourier transform and Fourier 
series [7]. The frame rate being relatively small (6 images per second), the data filtering is 
mainly performed spatially. To avoid parasitic frequencies due to the non-periodicity of 
images and to reduce the influence of boundary effects, here strongly amplified by the 
Laplacian estimate, a periodic extension of the data is performed at first. The thermal noise is 
well approximated by a white noise having a Gaussian probability distribution and a uniform 
power spectrum. This last feature implies that the filtering method, whatever it is, cannot 
eliminate completely the parasitic frequencies. Consequently, a calibration of the method in 
conditions close to the experimental situation is inevitable.  

 
The check of the data processing is realised as follows : starting from a given heat source 

distribution, the corresponding temperature charts are calculated using spectral methods with 
realistic boundary conditions. The influence of the noise amplitude on the data processing is 
then tested. The heat sources reconstructed from the noisy thermal data are compared to the 
sources given beforehand. More information on the data processing and its performances 
can be found in [7]. As expected, the check of data processing shows that errors on source 
determination grow rapidly with the thermal noise amplitude. The unstable nature of the 
temperature-source passage (inverse problem) comes from the regularising effects of the 
diffusion phenomena (direct problem). 

To limit noise effects, the cut-off frequencies of filters can be reduced ; in return, one 
observes, as it does, a decrease of the sources intensity and a spatial sprawl of zones where 
the heat sources concentrate. 

 
Besides, in the case of the experimental conditions, the following hypotheses are made: 
- the specific heat capacity C and the isotropic conduction coefficient k are material 

constants independent of the internal state, 
- the external heat supply re is time independent, 
- the convective terms of the material time derivative are negligible. 

These hypotheses are reasonable for many classical situations ; they may become widely 
unsound when strong anisotropy pre-exists or develops during the straining or when the 
thermomechanical loading leads to dynamic instabilities. 
 

4. An example of thermodynamic analysis  
 

Some polymers can undergo very large strains in a reversible way. This remarkable 
behaviour is often called rubber (or entropic) elasticity. The chosen example of behaviour 
analysis deals with one of these rubberlike materials: it is a thermoplastic polymer having a 

small density of crosslinks (grade 2533) and a constant mass density . 

In figure 1, the stress-strain hysteresis loops associated with increasing load-unload 

sequences is plotted. If 
chw  represents the overall heat rate, it is shown in [8] that the 

volume energy Ah related to hysteresis area can be written as 

   

CycleCycle
TT TTdwA dd ,,1chh    , (5) 

as soon as a hysteresis loop corresponds to a thermodynamic cycle. Both dissipation and 

coupling can then induce hysteresis mechanisms. Figure 2 shows that 
chw  is very often 

equal to the rate of mechanical energy D:ext w .  
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To interpret this result, we write the local expression of the first principle of 
thermodynamics 

erwe   qdivext , (6) 

where e is the specific internal energy. By linking Eqs. (4) and (6), we obtain 

TCe   . (7) 

This last result is the fundamental hypothesis of the molecular theory of rubber elasticity [xx]. 
The analogy with ideal gases leads to an internal energy independant of elongation, the 
stress being attributed to a so-called configuration entropy. As in classical elasticity, 

temperature T and strain  are chosen as state variables and no intrinsic dissipation occurs. 
By virtue of Eq.(7), the free energy is of the form [9] 

)()(),( TTT    (8) 

The stress is then proportional to the temperature  

),()()(),(),( 00,,   TTTTTT   (9) 

If the material is stress free at uniform temperature T0 ((T0, )=0), the material will remain 
stress free if the temperature is changed without deformation taking place. This result 
prohibits thermal expansion. In particular, the entropic elastic model is not able to predict the 
famous "thermoelastic" inversion effect. This property of rubberlike materials can be written 
in the case of tensile test as [10]  

 
 












0

0
 if 0)(p
 if 0)(n

T

T
 (10) 

This leads some authors to modify the classical scheme of entropic elasticity [9] assuming 
that a part of the internal energy is now function of strain.  
 

We followed another way [11]. In Figure 2, thermoelastic effects can be observed at the 
beginning of the first loading. Moreover, a slight dissipation induces a drift of the energy 
signals throughout the test. As a consequence, we claim that entropic elasticity is always 
defined by Eq.(7) but we consider that the overall strain is not strictly due to entropic 

elasticity. This leads us to introduce a strain tensor c characterising the configuration of the 
polymer chain network as a new state variable. The free energy is then decomposed into 
thermelastic part and entropic elastic part so that we get  

)((),(),,( )ccthec TTTT    (11) 

With Eq. (11), the thermoelastic inversion can be predicted (Figure 3). The change of 

slope corresponds to the change of dominating coupling phenomenon. It can be shown that 

for small strain, thermoelasticity remains preponderant and the slope  )( T is negative. 

For larger strain, the entropic elasticity dominates and induces a positive slope. Finally, a 

dissipation potential function of c  can be introduced to take account of irreversibility induced 

by the elongation of the polymer chains. 
 

5. Concluding comments  
 

The formalism of standard material gives a coherent and flexible theoretical framework. Its 
flexibility comes from the possibility of introducing state variables for summing up the various 
microscopic events which accompany the macroscopic deformation of materials. Moreover, 
this framework allows to define the different heat sources induced by deformation and a heat 
equation essential to link thermal and mechanical effects. In addition, infrared thermography 
represents a supplementary asset to check the validity of constitutive equations of models 
constructed within such a thermomechanical framework. The passage from temperature to 
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heat source provides with information that is more intrinsic to material behaviour than 
temperature. At present, the tendency is to correlate the distributions of heat source with that 
of strain rate obtained by digital image correlation [12]. This dual experimental approach 
should facilitate the identification of constitutive equations in presence of localisation 
phenomena that frequently arise at large strain when damage develops within the material. 
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Figure 1: Stress-strain diagram ; Pbax 2533 ; after [11] 
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Figure 2 : Energy balance ; Pbax 2533 ; after [11] 
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Figure 3 : Simulated "thermoelastic inversion effect" 

0 0.5 1
0

5

10

C
au

ch
y 

st
re

ss



M
Pa

)

Hencky strain 

http://dx.doi.org/10.21611/qirt.2000.050


