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Abstract: 
 

We present some elements in order to improve the non-detructive procedure for the measurement 
of the local heat coefficients between a flat plate and an air flow. We use the pulsed photothermal 
radiometry method which consists of analysing the transient temperature on the front face of a wall 
after a sudden deposit of luminous energy by a lump. The infrared camera measures the temperature 
evolutions at different abscissa from the leading edge of the plate, in order to deduce the local heat 
coefficients for the same experiment. The results of three identifications, based on a one-dimensional 
model at any abscissa with constant heat transfer coefficients, are compared. 
 
1. Introduction  
 
 The evaluation of the heat transfer coefficients between a wall and a flow is necessary for 
the control and the dimensioning of the thermal systems used in the energy processes. The 
installation of the flux and temperature sensors on the surface of the wall generates, often, 
considerable disturbances of the heat transfer. This is why the use of a measurement 
technique without contact has undeniable advantages. For that, we use an pulsed 
photothermal method. Being able to be employed in-situ, this technique consists in 
depositing of energy on the front face of the wall, and recording the temporal evolution of the 
surface. This method was introduced [1 to 3] to determine the thermophysical characteristics 
of materials, in particular, the thermal diffusivity. It was then extended to evaluate the heat 
transfer coefficients on the wall subjected to a convective heat exchange [4 to 6] or in the 
ducts [7]. These authors used a one-dimensional conduction model in the plate and the 
partial temporal moments of the temperature to identify the heat transfer coefficient. 
 For the measurement by a transient method the steady state exchange coefficient, it was 
supposed in above mentioned works that the heat transfer coefficient remains constant 
during the pulsed experiment. This assumption is debatable if the quantity of energy sent 
over the wall during the pulse affects considerably the boundary layer. In order to specify the 
limits of validity of this assumption and the effects of the pulse duration on the results of 
measurement, we present here a comparative study between the results of three 
identification methods. All these methods are based on the assumption that the heat transfer 
coefficient remains constant in time. Moreover, by the use of the infrared camera, we 
measure the spatial evolution of the convective heat transfer coefficient over the plate. 
 
2. Description of the experimental set-up 
 
 We realised an experimental set-up (Figure 1) for the measurement, by an infrared 
camera, of the temporal evolution of the temperature on the front surface of a vertical plate, 
after a deposit of luminous energy. The experimental device consists of two independent 
tables. On the first, are assembled the sample and the system of generation of the air flow, 
and the second comprises the camera and the excitation generator (lumps). 
 The sample is a 5 mm thick plastic plate (a = 1,67 10-7 m2 s-1, b = 514 J m 2 K-1 s-1/2), height 
of 30 cm and with 20 cm width (assumed as a semi-infinite wall). On its front face, we 
deposited a fine coat of black paint which ensures a maximum emission and absorption of 
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the infrared radiation. The flow of an ambient air parallel to the surface of the sample is 
created by a ventilator. A diffuser of air allows to have a flow covering the totality of the width 
of the plate. We carried out the acquisition of the transient temperature of the plate for a brief 
excitation (Dirac) and for three finite duration excitations of the halogens lumps (3.5, 5 and 8 
seconds). These measurement are made with three air flows (V1 = 1.3, V2 = 2.2 and V3 = 2.9 
ms-1), measured on the outlet side of the diffuser of air by a propeller anemometer.  
 The Dirac excitation is generated by a flash generator. However, the finite duration 
excitations are generated by two halogens lumps and controlled by an electronic timer. A 
wood sheet, at the ambient temperature Tamb, is placed in front of the lumps after their 
extinction in order to eliminate the radiation from the lumps (still hot) on the sample during its 
cooling. The infrared camera is connected to an analogical/digital sampler controlled by the 
personal computer.  
 
3. Theoretical model 
 
 The rise in temperature in the semi-infinite wall due to a brief thermal perturbation (Dirac) 
on its front face, verify, at each abscissa x, the linear model (Figure 2): 
 

  
0000

0
1

2

2









)t,y(,tat);t(W)t,(h
y

T
,y

tay
                              

f 









 (1) 

 
Where Wf is the energy density delivered by the flash lump, h is the global heat exchange 
coefficient at the abscissa x, (t) is the Dirac impulsion and ambT)t,y(T)t,y(   is the 
elevation of the temperature at x. The use of the one-dimensional conduction model at any 
abscissa x on the plate is justified by the low thermal conductivity of the plate ( = 0.2 W m-1 

K-1) and the uniformity of the energy density distribution. The surface temperature obtained 
just after the extinction of the flash lump (Figure 3) shows that the energy density is uniformly 
distributed on the plate. 
 It was shown in [4, 5] that the solution of the system (1) is:  
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where exfc (u) is a function defined by exp (u2) erfc (u). 
 The elevation of temperature for the excitation with a finite duration tc is given by: 
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where f is the flux density deposited by the halogens lumps. 
 
4. Identification methods 
 
 For the identification of the coefficient of transfer we use the partial temporal moments. 
This notion is developed in [2 to 4]. The analytical expression of the partial zero-order 
temporal moment of the parietal temperature for a Dirac excitation is: 
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For a tc. excitation, the moment is given by:  
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Direct identification 1. This method consists in seeking, by dichotomy, for an experiment 
duration tf, the theoretical value of h giving the same value of the theoretical zero-order 
temporal moment, (4) for a Dirac excitation or (5) for a finite duration excitation, as that 
provided by the experimental thermogram. The knowledge of the energy and flux densities, 
Wf and f is necessary here. 
 The energy density Wf is given by the flash installation and equals to 12000 J m-2. 
However, the flux density delivered by the halogens lump is evaluated from the thermal 
response of the plate in free convection. From the cartography of the transient temperature 
of the plate obtained in natural convection, we choose the temperature at different abscissa x 
from the leading edge of the plate. For each abscissa, we assimilate the experimental 
temperature to the theoretical one given by equation (3). Thus, from equation (3), by taking 
the global heat exchange coefficient varying from 15 Wm-2K-1 for x = 0.01 m, to 10 Wm-2K-1 
for x = 0.2 m [9], we evaluate easily the flux density f. This estimation gives an average 
value of f equals to f = 2000  80 Wm-2.  
 
Direct identification 2. This method has been developed by Crowther [6] for the finite duration 
excitation only. It differs from the precedent method in the fact that the value of h is obtained 
from the equality between the theoretical m0 and the experimental one of the temperature 
normalised by its maximum given at the moment tc. The theoretical m0 of the normalised 
temperature is: 
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 The advantage of this method is that the knowledge of the flux density f is not necessary, 
since the expression (6) does not contain the flux density. However, the accurate knowledge 
of the maximum temperature is important for the calculation of the experimental m0n. 
 
Correlation formula. This method is also developed by Crowther [6], witch considered that, 
at large value of the experiment duration tf, the m0 of the surface temperature is equal for a 
Dirac or a finite duration excitation. Consequently, It is interesting to use the Dirac zero-order 
moment (4) instead of the finite duration excitation one (5) since it is analytically simpler to 
calculate. The zero-order moment (4) can be written as: 
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We note the appearance of a relation )m(ft
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 For the values of *m0  obtained by the experimental thermograms, we established 

numerically the correlation formula: 
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5. Results and interpretations  
 
Experimental thermograms. We present on figures 4 and 5, the experimental thermograms 
obtained for various flow rates of the air, at x = 3 cm from the leading edge of the sample, 
respectively for a Dirac excitation and a 3.5 s excitation. We note that there is quite good 
differentiation of the heat transfer rates when increasing the velocity of the air flow. 
 
Radiation losses. We suppose that the global heat coefficient h is the sum of an hc coefficient 
(convection losses) and an hr coefficient (radiation losses). Using the linearization of the 
radiative heat transfer [6], we determine the hr coefficient by: 
 
    ambambr TTTTh  22  (9) 
 
 is the emissivity of the black paint ( = 0.95) and  is the Stephan-boltzmann constant.  
 The application of the eq. (10) shows that the hr coefficient is constant in time and space 
and have an average value: hr = 6 W m-2 K-1. By each identification method, we calculate the 
global heat coefficient h, afterwards the convective heat transfer coefficient by: rc hhh  . 

 
Convective heat coefficient hc. The heat transfer coefficient are calculated with the 
experiment duration tf = 60 s, since it had been established in [8] that h tended asymptotically 
in time to the constant values when tf increased.  
 Table 1 shows the calculated values of the convective heat coefficient hc at x = 5 cm, with 

the three identification methods. The relative errors 
)Dirac(c

)Dirac(cc

c
h

hh
h


  are also presented in 

this table. We compare the calculated hc values with those obtained by Dirac excitation since 
the two identification methods (direct identification 1 and correlation formula) give the same 
value of hc, at each x and for each flow velocity. This proves the applicability and the 
accuracy of these methods for Dirac excitation. A comparison with the results of the literature 
is impossible here since those were established under conditions different from the ours and 
for well defined flows. What is not the case here, where we seek to evaluate the heat transfer 
coefficient between a wall and an air flow with an unknown nature (laminar, turbulent…). 
 We note from table 1 that the relative error increases with increasing the pulse duration, 
and more particularly when the air velocity decreases. This observation is available for each 
abscissa x. It should be noted all the same that it is the direct identification 1 which gives the 
results closest to those obtained for a Dirac excitation (hc  - 25 %), whatever the excitation 
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duration and the rate of the air flow. However, the relative error is close to - 45 % for the 
direct identification 2 owing to the difficulty to evaluate the maximum temperature. The 
relative error can reach - 40 % for the correlation formula method, because of the 
assumption, that the m0 for the Dirac excitation is the same as for the pulse excitation. 
Consequently, we estimate that, contrary to the results given in [6], the direct identification 2 
and the correlation formula are not adapted when the excitation duration becomes larger. 
Since the absolute relative errors are superior to 25 % by all the methods, it seems that the 
constant convective coefficient hypothesis is not valid for the great excitation duration values. 
On the other hand, the deposit of an energy during a long time disturbs considerably the 
boundary-layer and creates a time variation of the convective heat coefficient. 
 The evolution of the convective heat coefficient with the abscissa x is given in (Figure 6). 
This evolution agrees with the empirical correlation for the turbulent external boundary layer 
given in [9] ( 20.

c xkh  , with k :coefficient depending on the fluid). The turbulence is not due 
to the great values of the velocity, but to the diffuser geometry used in our experiment. 
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Table 1 : Convective heat coefficient at x = 5 cm 
 Velocity Dirac  3.5s excitation 5s excitation 8s excitation 
  hc hc hc hc hc hc hc 

 V1 107 78 -27% 80 -25% 83 -22% 
Identif. 1 V2 148 112 -24% 120 -18% 111 -25% 

 V3 185 143 -22% 151 -18% 142 -23% 
 V1  55 -48% 60 -44% 71 -34% 

Identif. 2 V2  84 -43% 92 -38% 106 -33% 
 V3  111 -40% 120 -35% 135 -28% 
 V1 107 77 -28% 68 -36% 64 -40% 

Corr. Formula V2 147 109 -26% 96 -35% 96 -35% 
 V3 186 149 -20% 130 -30% 125 -33% 
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Figure 1 : Problem scheme 
 Figure 2 : Experimental set-up 

 
Figure 3 : Temperature along the plate at  

t = 0.1 s after a Dirac excitation 
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