
Estimation of a local 1D or 2D thermal 
conductivity field with infrared images processing 
and volume averaging method 

 
By Marielle VARENNE, Jean-Christophe BATSALE, Claire GOBBE 

 

L.E.P.T.-ENSAM, UMR 8508 CNRS, Esplanade des Arts and Metiers - 33405 Talence Cedex – 
FRANCE - Phone : (33) 5 56 84 54 29 -Fax : (33) 5 56 84 54 36 
E-mail : batsale@lept-ensam.u-bordeaux.fr 
 

Abstract 
 

The estimation of local thermophysical properties can be of paramount importance in order 
to study heterogeneous media. The volume averaging method is used to implement an estimation 
method of a local thermal conductivity field of a 1D or 2D heterogeneous medium. The method is 
tested with experimental transient temperature fields, obtained with a calibrated sample with an 
infrared camera. A large number of images are processed at transient state. The same intrinsic 
stationary field is estimated from each image. By repeated estimations, this method reduces the 
measurement noise influence. 

1. Introduction 

The aerospace and electronic industries use a lot of composite materials. If the 
macroscopic thermophysical properties are often sufficient for designers, it may be of 
importance to characterize the local behavior of such materials. The most commonly 
used methods to estimate local properties consist in doing local scale experiments. 
These methods, such as laser photoreflectance (Lepoutre et al 1996), need to handle 
very short characteristic times. The method proposed here tries to implement a 
macroscopic experiment in order to estimate local properties. The basic principle is to 
consider that, for longer times, the local transfer is steady, even if the transfer at a larger 
scale is transient. Therefore, the experimental device, based on infrared thermography, 
is simple. Nonetheless, the obtained images are quite noisy and complex, and must be 
processed using physical models. The volume averaging methods (Quintard and 
Whitaker 1993) is here used to process infrared images. This method is ordinary used to 
compute effective macroscopic properties (Nozad et al 1985). Here, transient 
temperature fields are processed in order to estimate local thermophysical properties. 

In this paper, a brief description of the method of volume averaging is made. Then, 
we describe its application to the estimation of the local thermal conductivities of a 1D 
and 2D heterogeneous medium.  

2.Presentation of the volume averaging method 

The volume averaging method (Marle 1967 and Quintard and Whitaker 1993) 
allows us to describe the transfers in a heterogeneous medium through a macroscopic 
model associated to an equivalent continuous medium. The basic idea of the volume 
averaging theory is that a temperature field T is the sum of a mean component, or 
macroscopic field T , and of a local component, T

~ , which describes the spatial 
deviation around the mean value of the temperature: 
 TTT

~
 . (1) 
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Here, the macroscopic temperature T  is an average temperature upon a surface 
of the same size as the unit cell of the periodic heterogeneous medium. In the general 
case, T  is defined by a convolution product such as: 

 TmT  . (2) 

Where m is a gate function of characteristic length l. The previously described averaging 
method also corresponds to a filtering of the signal. It attenuates the fluctuations of 
spatial frequency greater than the characteristic frequency 1/l, if l is the length of the unit 
cell. 

Carbonell and Whitaker (1984) propose that local variables (spatial deviations T
~ ) 

be linked with macroscopic variables (macroscopic temperature gradient field T ) by:  

 TT  .
~

b . (3) 

In a general case, b is a vector. The components of the closure vector b are local 
coefficients and depend on both the geometry and the thermophysical properties of the 
medium. When Eq. (3) is introduced into local equations, it yields a closure problem, 
which links b-field and the thermal conductivity -field (Quintard and Whitaker 1993): 
    I.b.   . (4) 

Eq. (4) is stationary. This is due to the fact that the characteristic times related to 
transfer at a local scale are much smaller than the times related to transfer between the 
excitation and the location of the measurement. 

3. Experimental estimation of a local thermal conductivity cartography 

The experimental method consists in applying a transient heat flux on one edge of 
a heterogeneous sample (see Fig. 1). For each time step of the experiment, an infrared 
camera records the temperature field at the surface of the sample. 

 
3.1 Estimation of the solution of the closure problem 
 

Each infrared image gives a 1D or 2D-temperature field T. The macroscopic 
temperature field T  is deduced from each temperature field by use of Eq. (2). The 

spatial deviation field, T
~ , is deduced from fields T and T , by use of Eq. (1). The 

macroscopic temperature gradient field, T , is obtained by differentiating T  with 
respect to the main heat flux directions. In 2D case, , it has two components: 

),,( tyxTx  and ),,( tyxTy . 
In the case of a periodical 1D medium, b becomes a scalar field b(x). In the 2D case, b 

becomes a vector field whose components depend on both space variables x and y: 
       yxbyxbyx yx ,,, b . (5) 

In our experiments, the sample is heated on one of its edges (Fig. 1). 
Consequently, the macroscopic temperature gradient is negligible in the direction 
perpendicular to the main heat flux. The unit cell is symmetric and the components b

x
 

and b
y of b-field are of the same order of magnitude. Those last two remarks yield a 

simplification in the expression of the closure problem. If the main heat flux is along Ox 
direction, respectively Oy direction, then the following relations approximate the closure 
problem (Eq. 3): 
      tyxTyxbtyxT x

x ,,,,,
~

 , (6) 
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respectively: 
      tyxTyxbtyxT y

y ,,,,,
~

 . (7) 

In theory, one thermographic image is enough to estimate the bx or by-field. But all 
the images need to be processed, in order to have an average value of the b-field, so as 
to decrease the noise influence. In 2D case, the knowledge of the b-field requires two 
experimental estimations, one for the b

x
-field, and one for the by

-field. The conductivity 
field is then deduced from the estimation of b-field (Eq. 4). 

 
3.2 Estimation of local thermal conductivities 
 

In 1D heterogenous medium, Eq. (4) is written : 

   
   

dx

xd

dx

xdb
x

dx

d 
 








     (8)  

and the expression of -field is then obtained directly: 

   
 











dx

xdb
eex 1// 211221      (9)   

In a 2D medium, Eq. (4) is more complex and is written: 
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The estimation of -field from the b-field is an ill posed problem which is very sensitive to 
the measurement noise. In 1D case, the main difficulty is to handle the derivation of b-

field. In order to study analytically, in 2D case, the measurement noise influence on the 
inversion, an approximated asymptotic solution of Eq. (10) is searched for. The b and  
fields are decomposed according to a perturbation method (Aziz 1988): 
      yxyxyx ,,, 10 bbb  , (11) 

         2
10 ,,, Oyxyxyx  , (12) 

where is the perturbation parameter. 0  stands for the equivalent, or macroscopic, 
thermal conductivity of the heterogeneous medium. This latter conductivity has to be 
deduced from a macroscopic measurement of the thermal diffusivity (Varenne et al 
2000), when the global heat capacity is previously estimated. 

Equations (5), (11) and (12) are used to rewrite system (10), which yields several 
systems, related to each order of parameter  
The order 0 solution is     0,, 00  yxbyxb yx , because of the periodicity conditions on b-
field (Quintard and Whitaker 1993). The order 1 system is: 
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A double integral transform, based on a double spatial Fourier transform, is applied to 
each equation of system (13). It yields a system, which links the first order of the 
decomposition of the and b1-field in Fourier space: 
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The variablesn and m are the spatial pulsations of the double Fourier transform. The 
following relations define the spatial pulsations n and m: 
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L
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
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2
    ;    

2
 , (15) 

where Lx, respectively Ly, is the distance upon which the Fourier transform is made along 
Ox, respectively Oy. 
The particular cases where n=0 or m=0 are treated separately, and give: 
 )0,()0,( 101 n

x

nn BjΛ   , (16) 

 ),0(),0( 101 m

y

mm BjΛ   . (17) 

Equations (9), (14), (16) and (17) are ill-posed problems for inverse techniques (Hensel 
1991). The noise on the b1-field is increased by derivation, and the -field is even 
noisier than the b1-field. When 0n  and 0m , the estimation of 1  can, at first 
sight, be done with the first or the second equation of system (14). But the error upon the 
conductivity field depends on the values of n and m. Thus, in the first equation of 
system (14), large values of m will give larger errors upon . On the other hand, the 
second equation is more sensitive to n values. So as to make the most accurate 
estimation of field, the first or the second equation is chosen, according to the values 
of n and m. Instead of in 1D case, this latter remark, and Eqs. (16) and (17), make the 
estimation of b-field with respect to two space directions absolutely necessary. 

The inversion of the 1  spectrum yields an estimation of the first order of the 
development of the conductivity field, 1 (x, y). This 1-field is a relative distribution of 
local thermophysical properties, and not an absolute measurement of the thermal 
conductivity. 

Experimental results 

The experimental devices are schematized on Fig. 1. The samples are made of  
perforated steel plates and epoxy resin. The surface of the samples is painted black so 
as to ensure a constant and close to 1 emissivity. The infrared pictures are obtained with 
an AVIO TVS 2000 infrared camera, which can record up to 512 images. Each image is 
composed of 100x256 pixels. Detailed informations about the size of the samples, the 
experimental precautions and the processing and inversion of the data are given in 
Varenne et al, 2000-a and Varenne et al, 2000-b. 

Figure 2 illustrates an example of an instantaneous local temperature field T of the 
surface of the sample in 1D and 2D case. The measurement noise hides the local 
temperature fluctuations, which will reappear thanks to the treatment of a great number 
of temperature fields. Figure 3 illustrates a row (along the Ox direction) of the b-field in 
1D case and, in 2D case, xb1 -field , whose width (along the Oy direction) is equal to the 
width of a unit cell. It shows that the estimation is more accurate for the points that are 
closer to the thermal excitation (smaller x abscissas), where temperature gradients are 
larger. A similar estimation with the heating plane resistance on top of the image is made 
to obtain the yb1  field. Figure 4 illustrates the power spectral density of xb1 . The 
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periodicity is very accurately identifiable, since the power peaks are sharply defined. The 
xb1 -field corresponding to the observed surface can then be reconstructed by duplication 

of the average unit cell. In 1D case, the resistivity field(inverse of conductivity field) is 
obtained with Eq. (9) and inversion method. In 2D case, the image of the xb1 -field in 

Fourier space is calculated. The same treatment is applied to yb1 -field. The spectra xB1  

and yB1  give an estimation of 1 via system (14), Eq. (16) and Eq. (17), and therefore of 
1, by the inverse Fourier transform of spectrum 1. Figure 6 represents the 1D case 
estimation of the resistivity field and in 2D case, the first order of the estimated 
conductivity field 1. The medium's morphology is correctly estimated, although the 
angles of the square inclusions are smoothed by the estimation method. These 
smoothing effects are also partly due to the camera space filtering. But they are also 
reinforced by the treatment in itself, which attenuates the information with higher space 
frequencies.  

The proposed method represents a fast and convenient experimental process to 
estimate the local thermal conductivity field of a 2D heterogeneous periodic medium. 
The morphology and the order of magnitude of the conductivities were accurately 
estimated. 
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Figure 1 Schematic of the experimental calibration 1D and 2D devices 
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Figure 2 Instantaneous temperature fields in 1D and 2D cases 
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Figure 3. b field in 1D case and xb1 -field in 2D case 

 

Figure 4. Power spectral density of xb1 -field in 2D case 
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Figure 5 Thermal resistivity-field in 1D case and -field in 2D case 
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