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Abstract 

Statistical analysis of airborne IRLS (InfraRed Line-Scanner) images in DWT (Discrete Wavelet 
Transform) numerical domain is an extension of statistical measurements of computer gener,ated images 
in our earlier works aimed to finding method for IRLS image coding. The initial results obtained with test 
images indicate that proposed statistical techniques in the wavelet transform domain are efficient for joint 
space-frequency 20 anisotropy analysis and adaptive data compression of IRLS images. 

1. Introduction 
Image analysis techniques can be classified as phenomenological, structural, deterministic, 

and statistic. Statistical parameters of image and corresponding radiance and terrain 
temperature distribution describe basic characteristics of scenes which are of practical 
importance when modeling scenes, evaluating and predicting IR system performance, 
developing algorithms for digital processing and data compression for storing or transmission. 
The statistical properties of high-resolution InfraRed Line-Scanner (IRLS) images of natural 
terrain in high demand surveillance application are analyzed in this paper. 

IRLS is a mechanic-optoelectronic device for high-resolution image acquisition in the 
thermal IR spectral range. The terrain is sampled by a transverse scan as the aircraft moves 
forward along a track. An obtained series of signals, each corresponding to a terrain scanning 
line, forms a two dimensional image without temporal information, because each line consists of 
new data. Consequently, IRLS operates as a linear angle scanning system, giving angular scan 
and linear displacement along track as the two dimensions of the image. IRLS is more sensitive 
along the scan direction, giving highly correlated images with the serious geometrical distortion 
in approaching the horizon [1,2]. 

Over the past years many classical statistical techniques, in space or frequency domain, 
which involve probability density function (pdf), autocorrelation funCtion (acf) and power spectral 
density (psd), have been utilized to analyze linear scan patterns in one dimension (1 D). 
However, IRLS requires the analysis of two-dimensional (20) aspect of acquired data. Many of 
the analysis techniques employed for 10 data may be either used directly by averaging over 
two dimension data or by generalization to a 20 equivalent [3.4]. 

Three major obstacles in statistical analysis of IRLS images can be identified: 
nonstationarity, anisotropy and edge sensitivity. An assumption on stationarity of image 
background, i.e. that the statistical properties do not vary over an image, may be true for a 
homogenous terrain, but it is rarely valid for real IRLS images, when the image segmentation 
and isotropy analysis are necessary. The edges in an IRLS image carry very important spatial 
information about the position and size of objects. In spite of that, there is no good classical 
measure for the edge sensitivity of an image. 

One new technique for the analYSis of nonstationary images is DWT (Discrete Wavelet 
Transform). The DWT offers good edge localization in spatial domain and at the same time 
good resolution at low frequencies in the transform domain [5], which are desirable properties 
when analyzing highly correlated IRLS images. Also, the DWT is capable of eliminating the 
redundant information and providing a compact, multi resolution representation of images for 
efficient entropy reduction and coding. 

In this paper, we propose a new application of DWT in the segmentation, edge sensitivity 
and anisotropy analysis. Various types of IRLS images, carefully segmented along the scan 

QIRT 96 - Eurotherm Series 50 - Edizioni ETS. Pisa 1997 

http://dx.doi.org/10.21611/qirt.1996.061



direction, based on our previous analyses [1,2] are decomposed by 2D separable DWT filters 
with optimal space-frequency localization (figure 1). Our analysis is based on the comparison of 
histogram shape and width, variances and entropies of horizontal and vertical subimages 
versus decomposition level. 

In the first part of the paper, classical statistical parameters are explained. Next, the OWT 
decomposition technique is defined and the edge sensitivity and anisotropy analysis, based on 
that method, is proposed. The obtained statistical results of IRLS test images are discussed in 
the final part of the paper. 

2. Analysis techniques 

The image is treated as an arranged 2D set of finite dimensions IxJ, whose discrete 

elements (pixels) Si.j' i = 1,2,3, ... ,1, j = 1,2,3, ... , J take discrete values S = 0, 1,2, ... ,2 1i -I . Here 

B denotes the number of bits used for quantizing of each pixel. Two types of test images 
(512x512 pixels), acquired during night from low altitude flights at 1500/3000 feet, are used in 
our experiments: one is a 'city' area full of details of various size and contrast, and the other one 
is 'fields' representing uniform-like terrain. Two analyzing segments (256x256 and 128x128 
pixels with 28 gray levels) along scan direction of each image type are selected and analyzed 
(figure 2a). The first segment covers nadir and the second covers region from nadir towards the 
horizon. 

Scaled pdf of analyzed test images - histograms (figure 2b) are calculated as a relative 
number of appearance of every permissible pixel value 

(1 ) 

The variance of image is the mean value of squared difference between pixels and mean value 
m 

1 I J , 

0"2 =-LL(Sij -mt 
I J ;=1 j=1 

(2) 

I J 

where m is the spatial mean value of a" pixels m=~ LLS;,j . 
I J ;=1 j=1 

The spatial autocorrelation function acf(k) quantifies, on average, how values of pixels are 
similar and predictable as a function of their inter-pixel separation k. According to the Wiener­
Kihtchine relation acf and psd of a stationary process form a Fourier transform pair. However, in 
non stationary image analysis there are many problems in applying the Fourier transform 
technique: windowing, averaging, spatial-frequency resolution, aliasing and anisotropy 
estimation [3,4]. 

In contrast to the Fourier transform, the Discrete Wavelet Transform offers many 
advantages: compact, stable multiresolution image representation, adapted to nonstationary 
images with good edge localization and additional spatial-oriented selectivity, as we" as 
existence of fast computational algorithm (L,H filter banks) [5]. Elementary functions that form 
the wavelet transform base are obtained by dilation and translation of one special prototype 
function V/(x) , called the mother wavelets 

_L 
V/j,k(x)=2 2 V/(Tjx-k) (j,k)EZ2 (3) 

where j, k are dilation and translation indices, respectively. It should be proved that DWT is 
equivalent to filtering and decimating of a filtered signal. The filter bank, with perfect 
reconstruction, consists of a lowpass filter Land highpass filter H, whose impulse responses are 
in special relationship with a mother wavelet function. In order to compute separable 2D DWT of 
an image, 1D FIR (Finite Impulse Response) filters are used and combined with decimating in 
both horizontal and vertical dimensions to compute at each level: 1) a lowpass approximation 
image, 2) a horizontal detail image, 3) a vertical detail image, and 4) a diagonal detail image 
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(figure 1a). In a multilevel decomposition, the coarse resolution approximation image is similarly 
decomposed, and so on. Subimages in the two level decomposition U=1,2) DWT (FIR filters are 
8-taps Binomial with optimal spatial-frequency resolution) of the second type IRLS test images 
are shown in figure 1b. 

2.1 Edge sensitivity analysis 

The spatial difference exceedance (sde) probability density function, sensitive to edges, is 
usually used for edge sensitivity analysis [3]. The spatial difference pdf is formed for a particular 
separation by differencing the intensity values of two pixels in both orthogonal directions. The 
degree of deviation from a Gaussian distribution of the spatial differencepdf is a measure of the 
edge sensitivity of an image. 

In the case of DWT image decomposition, as proposed in this work, the histograms of edge 
subimage can be modeled with the so-called generalized Gaussian function [5], regardless of 
the types of test image histograms (figure 2b). In our analysis we obtained the histograms edge 
subimage (figure 2c,d) which seem to be between Gaussian and Laplacian pdf. The degree of 
deviation from the Gaussian distribution were used as a measure of the edge sensitivity of IRLS 
images. It is interesting to note that in a special case, when DWT is equal to Haar transform, the 
histograms of the edge subimages are identical to the sde probability density function formed by 
differencing neighbouring pixels. 

2.2 Structure function 

The structure function O(k) is another statistical measure [3] which involves the mean 
square of the difference between pixel values for a given separation k and m=O 

D(k)=~ I(Si -Si+S =2(0-
2 

-acf(k») (4) 
I i=1 

In figure 3a,b the evaluations of IRLS O(k) in horizontal and vertical DWT subimages are shown. 
One can see that for IRLS images the exponential model of the correlation is initially a good 
approximation, as it was known to be valid for original visual images [3]. It seems to us that the 
exponential model is better in the DWT domain. 

Generally, correlation properties of images are of special interest when developing image 
compression techniques. If the similarity between neighbouring pixels is large, it is possible to 
estimate the value of a current pixel from the values of one or more of its neighbours that have 
been previously coded. The normalized covariance coefficient, used in this work is given by 

,.,{k k )=~l~,J~"(Si,j-m)(Si+kh,j+k, -111) 
I-'~ I" v IJ L. L. 2 (5) 

i=! j=! 0-

where kh,kv = O,±I,±2, ... denote correlation distance in the two orthogonal directions (horizontal 
and vertical). The covariance coefficients between neighbouring pixels in horizontal subimages 

Ph = p(l,O) versus DWT decomposition levels, are shown in figure 3c. 

2.3 Entropy 

The entropy value is a measure of information content of an image and at the same time 
determines the smallest possible bit rate in independent coding of each pixel without losses. 
The first order entropy is equal to the mean value of information content per one pixel [1] 

2B_I 

H= - I Ps log2(Ps) (6) 
s=o 

The first order entropy of horizontal DWT subimages Hh of IRLS test images versus 
decomposition level are shown in figure 4a. 

370 

http://dx.doi.org/10.21611/qirt.1996.061



2.4 Isotropy analysis 

Subjective estimates of isotropy and anisotropy of images are very complicated, thus the 
assumption of isotropy of the background is inherent in developing many algorithms for data 
compression. A classical relative isotropy function (rif) is the ratio of the psd components in the 
two orthogonal directions in an image [3]. With this function it is possible to measure the 
isotropy of an image in a particular spatial frequency range. In this paper, we propose the 

calculation of ril( (J"/~ I (J"~) as the variances ratio of horizontal and vertical subimages obtained 

by OWT decomposition of IRLS test images (figure 2f) versus the decomposition level. The 
additional advantage of OWT technique is the possibility of simultaneous anisotropy analysis in 
the spatial domain by comparing the edge sensitivities of horizontal and vertical subimages, as 
explained in 2.1. We also propose the generalization of the rif function in the anisotropy analysis 

of normalized covariance coefficient rif{p" I p,.) and the first-order entropy rif( H" I H,.) in 

horizontal and vertical subimages of IRLS test images versus the decomposition level (figure 
3d, figure 4b). 

3. Results 
In order to analyze 20 aspect of IRLS data, we at first had to segment the images in 

several analysis frames. The IRLS test images of two types of terrain are subdivided into two 
frames: the first one covers nadir, while the second one covers the area towards the horizon, 
where the influence of the line scanner is considerable. Over each frame the images are 
assumed to be stationary: the mean value, variance, covariance coefficients and first ord.er 
entropy of the first type (city area) are (m=165.26, d=1128.29, Ph=O.822, Pv=O.826, H=6.98), 
(m=137.63, d=920.52 , Ph=O.851 , Pv=O.895, H=6.81); while for the second type (fields) are 
(m=153.88, d=594.38 , Ph=O.939, Pv=O.846, H=6.50), (rh=129.60, d=811.11, Ph=O.818, 
Pv=O.917, H=6.69), of frames in nadir and towards horizon, respectively. 

The OWT removes much of the correlation between the neighbouring pixels in IRLS 
analyzed images, so that the obtained multiresolution structure is more suitable for efficient 
redundancy reduction and coding. Oecorrelation results in concentration of sub images 
histograms around zero+128, and therefore in reduced variance and entropy. The obtained 
statistical parameters agree with theoretical predictions: more correlated second type of images 
has more narrow histogram of subimages (figure 1c,d) and consequently lower variance and 
entropy than the first type of subimages. The identical trend of the variance and first order 
entropy can be noted when comparing frames 2. and 1. for both types of images. The degree of 
the anisotropy variance is also smaller for the frame 2., and is simultaneously slower then 1, 
while the rif of entropy is closer to 1 and it slowly varies with the decomposition level. Those 
results can be used in setting of an appropriate quantizer in the efficient coding of subimages. 

We found that the correlation after OWT is rested only among neighbouring pixelsk=1,2 in 
horizontal direction in horizontal oriented subimages, i.e in vertical direction in vertical oriented 
subimages. The important result is that the values of covariance coefficients in vertical direction 
(along track) are larger in the 2. frame then in 1. frame, where is also the influence of a line 
scanner more considerable. This disproportion becomes larger when a decomposition level 
increases, regardless on the type of images. These results point out on the possible adaptive 
predictive coding of subimages. 

4. Conclusion 

In using the OWT image decomposition, we found that it has advantages over the statistical 
techniques separately dedicated for the spatial and frequency domain. Applying the OWT over 
IRLS test images, we obtained multiresolution subimages in 4 levels with good edge localization 
and spatial-oriented selectivity. The statistical parameters analysis of these subimages is more 
meaningful than that of the original test images. OWT also improves the edge sensitivity and 
anisotropy analyses in along two directions, horizontal (across scan) and vertical (along track). 
However, further work is needed to quantify more precisely the observed anisotropy of OWT 
decomposed IRLS images and for their exploitation by some efficient adaptive image coding. 

371 

http://dx.doi.org/10.21611/qirt.1996.061



REFERENCES 
[1] Z.Barbaric, A.Marincic, G.Petrovic and D.Milovanovic. - Thermal images generated by a 
line-scanning technique: Statistical properties. Applied Optics, Vol.33 No.20, 1994. 

[2] D.Milovanovic, A.Marincic, Z.Barbaric and G.Petrovic. - Statistical analysis of computer 
generated thermal images based on overall modeling of line-scanning process. In Proceedings 
QUIRT 1994, Italy, pp.13-18. 

[3] E.M.Winter and M.e.Smith. - Analysis techniques for two-dimensional infrared data. In 
Proceedings SPIE, Vo1.156, 1978, pp.20-29. 

[4] N. Ben-Yosef, K. Wilner, S.Simhony and G.Feigin. - Measurement and analysis of 2-D 
infrared natural background. Applied Optics, Vol.24 NO.14. pp.21 09-2113, 1985. 

[5] S.G.Maliat. - A theory for multiresolution signal decomposition: The wavelet representation. 
IEEE Transactions on PAMI, Vo1.11, No.7, 1989. 

i=l i=2 
j=2 (LL) j=2 (LH) i= 5 

j= I (LH) 

i=3 i=4 Horizontal orientation 
j=2 (HL) j=2 (HH) sub image 

j= 6 i= 7 
j= I (HL) j= I (HH) 

Vertical orientation Diagonal orientation 
sub image sub image 

a) b) 

Fig.1. - a) Separable 2D DWT (1 D 8-taps Binomial filters L and H) image decomposition in 2 resolution 
levels j and b) multiresolution (scaled) subimages i of the first type IRLS test image. 
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Fig.2. - a) Two analysing segments of IRLS test images and b) their histograms. Histograms of c) 
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Fig.3. - Structure function O(k) of a) horizontal (i=5) and b) vertical (i=6) subimages. c) Covariance 

coefficients of horizontal subimages (i=5) and d) relative isotropy function rif(Ph / Pv) vs decomposition 
levelj. 
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FigA. - First order entropy H of a) horizontal (i=5) subimages and b) relative isotropy function 
ri/(Hh / Hv)vs decomposition levelj. 
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