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Abstract 

The efficiency of spectral methods of ICP solution for processing the IRT data has been demonstrated. 
The statistical analYSis of nongaussian IRT noises using nonparametric Kolmogorov-Smimov statistics has 
been carried out and consistent estimation of cumulative probability function for the ITR noises has been 
found. 

The nonconsistency of pOint estimation for optimal regularization parameter selection procedure for the 
case of nongaussian IRT noises has been shown. 

The new selection rule for optimal regularization parameter value using nonparametric statistics of 
Smirnov-Kramer-von Mises «(j)2 - test) for the case of non gaussian IRT noises has been proposed. 

1. Inverse conduction problems and processing IR thermography data 

The measurement of non-uniform heat flux over conductive elements is a basic measuring 
operation in engineering. Any heat flux identification technique includes the transformation of 
heat flux field into temperature field, the temperature field estimation and the conversion of a 
temperature field into heat flux distribution by solving the appropriate inverse conduction 
problem (ICP). The thin metallic film technique is a rather popular method in aerospace 
applications [1] and for the small Biot number accurately converts a 2-D heat flux distribution 
into a 2-D temperature field. Recent progress in measurements of the spatial distributions of 
surface temperature by infrared thermography (IRT) creates a sound experimental base and 
excellent opportunities for further improvement of the heat transfer identification. The non
disturbing IRT provides us with experimental information on a 2-D temperature field at the 
enormous rate of 107 

- 108 Bytes/sec with highest spatial resolution. This feature of the IRT 
implies very strict restrictions on efficiency and rate of processing of temperature data in 
numerical solution of the ICP. 

The ICP is the ill-posed problem according to the classification by Hadamard due to the 
discontinuity of the differential operator of Laplace and, hence, the ICP solutions lead to the 
tremendous amplification of the noise in measured temperature data. To solve ICP the special 
procedures called regularization of the ICP have been developed [2]. The essence of 
regularization is the approximation of non continuos operators by a family of continuous 
operators and the proper selection of the regularization parameter using given a priori 
information on the inverse problem. When the regularization parameter decreases, 
approximated operator approaches to the noncontinuous operator and noise in solution 
increases faster. From another hand, the increasing regularization parameter increases the 
smoothness of solution, but the accuracy of approximation in general becomes worse. This 
dilemma between accuracy and smoothness should be solved by the appropriate choosing of 
regularization parameter. The procedure of selection of the regularization parameter is based 
on the analysis of available a priori information on the solution and the processed data. For 
that reason, the additional a priori information on the accuracy of temperature measurements 
should be at hand to find a regularized solution of the ICP. Also it is necessary to construct a 
rule for proper selection of the value of the parameter of regularization to achieve the best 
possible solution of the ICP for a given a priori information and accuracy of IRT 
measurements. 

The existing methods for solution of the ICP could be classified into following groups . 
• The step regularization methods. 

Q/RT 96 - Eurotherm Series 50 - Edizioni ETS, Pisa 1997 

http://dx.doi.org/10.21611/qirt.1996.019



The ICP solution by direct numerical differentiation of experimental data with noise is the 
fastest and the simplest one. This technique, however, requires an implicit step regularization 
procedure and could not be used for processing of data obtained on fine grids [1]. 

• The variational methods. 
The most general and popular approach in ICP solutions is a classic variational technique 

developed by Tichonov [2] and extensively studied by Alifanov [3]. The system of differential 
equation is replaced by the functional minimizing difference between the integral solution of 
the direct conduction problem T(ij) and measured data {T} with an additional functional called 
stabilizer in the form 

J(ij) = J [T(ij) - {T}]dS + a..O.(ij) (1) 
s 

The heat flux distribution is calculated as 
q = arg min J(q) (2) 

The minimization of functional transforms the solution of the initial ICP into the solution of 
the system of linear algebraic equations. However, the regularized solution depends on the 
right selection of the stabilizer n. To identify the N-dimensional vector of heat flux by 
variational methods approximately N3 operations should be executed. 

• The iterational methods. 
The more advanced method of ICP solution is the iterative technique developed by Alifanov 

[3]. This technique is based on minimization of functional constructed on the difference 
between exact solution and measured data {T} in the form 

J (ij) = J (T(ij) - {T}]dS + a..O.(ij) (3) 
s 

by using iterational sequences as 
qk+l = qk -1\J'(qk) J(qk+l) < J(qk) (4) 

with k = 0, 1, 2, ... m. The iterational process is stopped after the m-th iteration. The number 
of iterations m should be considered as the regularization parameter. The complex adjoint 
conduction problem should be determined and retrospectively solved to find the gradient of the 
functional. The iterational methods allow to reduce the total number of operations to mN2. 

• The spectral methods 
Recently the new spectral technique for non-uniform heat flux identification has been proposed 
[4]. The method is based on the expansion of heat flux and temperature in Fourier series on 
eigenfunctions of discrete Laplacian over a rectangular mesh and Wiener filtration of 
temperature data as a precondition procedure. The projection subspace dimension is used as a 
regularization parameter. The two-point heat sources at distance of 2 mm have been resolved 
by spectral method on a copper plate with 0.85 mm thickness [5]. The usage of an efficient 2-D 
sine FFT and IFFT for implementation expansions in Fourier series drastically decreases the 
number of computational operations to Nlog2N. This feature provides the spectral algorithm with 
a high processing rate potential and creates opportunities for its realization in real time mode. 

To process 256x512 pixels of IR frame it is necessary to complete 1015
, 1011 and 106 

operations applying variational, iterational and spectral methods respectively. For that reason 
the spectral technique is most suitable for processing IRT data. 

The selection rule for subspace dimension has been proposed [4] for the case of gaussian 
noises in temperature measurements using the point estimation technique. However, for 
nongaussian errors the application of the point estimation technique usually leads to 
inconsistency and inefficiency. 

In present paper nonparametric statistics for regularization criteria in spectral methods is 
studied and a new selection rule for optimal subspace dimension is proposed. 

2. Spectral method for IRT data processing 

Let us consider the spectral method for solution of ICP for IRT data acquired on a square, 
over thin metal film, given in dimensionless form. The set of pixels forms a rectangular mesh 
with (N+1)2 nodes {Xj'Yj} and step h = lIN on the unit square 0::;; X ::;; 1;0 ::;; Y ::;; 1 . The 
dimensionless energy balance for each internal pixel can be written as 
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dT',J(t) h 
dt =,1 T.it ) + ql,J(t) 

(5) 

,1hTI,J = (TI,J+l + TI,J-l + TI+1,J + TI-1J - T',J) 1 hl 

with zero initial condition and boundary conditions. 
The eigenfunctions of a spectral problem for mesh Laplacian tJ.h on the unit square form a 
complete orthonormal basis in the space of mesh function as 

u~m = 2sin(k1tih)sin(m1tjh) 
with eigenvalues 

",k,m (,1h) = 4h-2 {sin2 (k1th 12) + sin2 (m1th 12)} 
where 0 < k , m < N are integers 
Expanding the solution in a Fourier 

N-l N-l N-l N-l 
T '" '" Tk,.. k,.. '" '" k,m k, .. I,J = £...£... u lJ ql,J = £...£...q uI,J 

1=0 J=O 1=0 J=O 

we simplify the finite-difference balance equations (5) to the diagonal form 

dTk,m(t) = _",k,mTk,m(t)+ qk,m(t) 
dt 

with zero initial conditions. 

(6) 

(7) 

(8) 

(9) 

The solution of the balance equation in the diagonal form (9) can be written in the explicit form 
as a convolution integral 

Tk,m(t) = J qk,m(1;)exp(_",k,m(t -l;»dl; (10) 
o 

To solve the Fredholm integral equation (10) we can use a powerful deconvolution method [2]. 
However, for quasi-steady-state conditions the integral equation (10) is simplified to 

qk,m(t) = ",k,mTk,m(t) (11) 

After calculation of components qk,m we can construct a heat flux distribution in the space 
domain using the Fourier expansion (8). 

Unfortunately, the direct application of spectral methods is an unstable procedure due to the 
tremendous amplification of high frequency noise in IRT data. To improve the stability of 
spectral methods, Fourier components {Tk,m( t )} are filtered by an appropriate 2-D low pass 
filter with frequency response wk,m • The regularization parameter of a 2-D low pass filter is 
selected using a priori information on temperature measurements to increase a condition ness of 
the algorithm. 

Let the IRT data {TjJ} on mesh Db contain some measurement errors EjJ: 

{TjJ} = TjJ + EjJ (12) 
Then the accuracy of the developed heat flux estimation technique is defined as 

N-l N-l N-l N-l 
<>ql,J = LL",k,m(wk,m _l)Tk,mu~j" + LL",k,mWk,mEk,mu~' (13) 

k=l m=l k=lm=l 

The first term defines an approximation error due to filtration and the second term presents a 
noise amplification error. The preprocessing filtration of initial data may be considered as a 
regularization procedure with the filter bandwidth as a regularization parameter. The decrease of 
a filter bandwidth causes less noise amplification but higher approximation error and vice versa, 
the enlargement of a bandwidth reduces an approximation error and magnifies high frequency 
noise. The proper selection of the filter bandwidth is based on additional criteria which could be 
derived from available a priori information. 

The quasi-optimal filter is implemented as a projection onto a subspace with dimension M2 
with a 2-D Hamming window to reduce an effect of rippling as 
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-

if (Wk.m (M») =: 0.54 + 0.46 cos(x(k' + m ' )111 1M) 

(Wk'"'(M») =: 0 if (k' + m'f" 1M> 1 
(14) 

To determine a quasi-optimal filtration. we must define a cutoff frequency or dimension of 
subspaceM. 

The only procedure based on a statistical analysis of the difference between initial noisy 
temperature IRT data {Tl and temperature data after filtration T , referred as the temperature 
residue ~ , with a priori information on a temperature measurement accuracy can provide a 
stable and reliable result. 

N-IN-I 

T1.J
R 

=: {f1.J}-T1'/ =: LL{fk.m}(l-wk.m(M»utj"' (15) 
1=0 )=0 

3. Nonparametric statistics as regularization criteria for ICP 

In a previous paper [4]. for the case of gaussian noises in IRT data, the simple rule for 
optimal dimension selection of M based on point estimation has been proposed 

M = arg min (lcr(E)- cr(~)I) (16) 
where cr(Z)- - is the standard deviation of random variable Z. 

Let us analyze the statistical properties of IRT noises reported earlier [5]. The IRT data have 
been obtained by AVIO Thermal Video System TVS 2000ST (Nippon Avionics, Japan) on an 
isothermal copper plate at room temperature. First of all it is necessary to carry out the normality 
tests on the noise of IRT data using the Kolmogorov-Smimov (K-C) criteria. Let us sort in 
ascending order 32x32 pixels IRT noise Eij. transform data into variational series (the order 
statistics) Ei

s 

Eij ~ Ei
s : Ei ~ Ei.1 (17) 

and calculate the empirical cumulative probability function as 
F(E) = 0 if -co < E < El S ; 

F(E) = i/n if Ejs:s; E < Ei+,s ; (18) 
F(E) = 1 if EnS:S; E < co. 

which is compared with normal distribution N(Il,cr2
) in the form 

FNO~) = erf «E -Il)/cr) (19) 
Figure 1 shows the comparison of the empirical probability function (18) with the normal 
distribution (19). The K-C test is based on nonparametric statistics D [6] 

D = max ( I F(E) - FNO~)I ) (20) 
According to K-C test with significance level less than 0.01, the hypothesis of normality for IRT 
data should be rejected. Moreover, the K-C test provides us with the powerful tool to find an 
adequate approximation for empirical cumulative function. For example the empirical data in 
Figure 1 could be adequate fitted as sum of two gaussian curves by the following expression 

F APPR(E) = 0.354erf «E -1l)/0.301)+O.646erf «E -11)/0.646) (21) 
Let us consider the heat flux restoration by a spectral technique using IRT data with 

nongaussian noises. The initial heat flux distribution with two anisotropic peaks over a 
conductive plate ( Lx = Lv = 0.1 m , d = 1 mm, k = 15 W/mK) is presented in Figure 2. IRT data is 
deteriorated by equal mixture of two gaussian noises with zero mean and different standard 
deviations crl =0.11 K and cr, =0.22 K. Figure 3 displays the 16x16 pixel IRT data over the 
conductive wall with zero boundary conditions and adiabatic intemal surface. The two rather 
sharp peaks in heat flux distributions have been converted into one smooth peak in temperature 
distribution due to the conduction effects. Using the spectral technique with quasi-optimal 
filtration (14) as a regularization procedure, the temperature residue ~ and relative heat flux 
residue qR = (q - ij) I qMAJ( have been calculated for a different subspace dimension M. To 
estimate the optimal value of subspace dimension M, the Smimov-Kramer-von Mises criterion 
( (J/ -test) has been used in the form [6] 
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(j) 1 (M) = j [F(E) - F(TR (M»] 1 dF(E) (22) 
o 

The values of 0" (TR), 0" (qR) and CiJ2 for different M are presented in table 1. 

M 
O"(~) 

0" (qR)102 
CiJ2 104 

Table 1. The effect of subspace dimension M on statistical characteristics 
of temperature and heat flux residues. 

4 
14.8 
4.4 
61 

6 
9.8 
2.5 
32 

7 
7.9 
1.9 
29 

8 
7.3 
1.6 
35 

9 
6.9 
1.6 
42 

10 
6.5 
1.7 
50 

12 
6.1 
2.2 
61 

The comparison of values of 0" (~) from Table 1 and 0" (E) = 5.5 demonstrates the 
impossibility of applying point estimation rule (16) for proper selection of subspace dimension M 
for nongaussian IRT noises. 

For non gaussian IRT noises the new criteria of selection of subspace dimension M is 
constructed in form of nonparametric CiJ2 statistic 

M = arg min (CiJ2 ( M » (23) 
For a given IRT noise the rule (23) provides us with the value M = 7, however, the minimum 

of the standard deviation of heat flux residue 0" (qR) takes place at M = 9. The heat flux 
distribution restored by a spectral method using non parametric statistic (23) is presented in 
Figure 4. Nonparametric criteria for (j)2 allow to get a robust estimation of the optimal subspace 
dimension and a more smooth regularized solution of ICP. Generally, the proposed selection 
criteria (23) are less sensitive to the special form of the cumulative probability function of IRT 
noise. 

4. Conclusions 

The efficiency of spectral methods of ICP solution for processing IRT data has been shown. 
The statistical analysis of nongaussian IRT noises using nonparametric Kolmogorov-Smimov 

statistics has been carried out and consistent estimation of cumulative probability function for 
the ITR noises has been found. 

The non consistency of point estimation for optimal regularization parameter selection 
procedure for the case of nongaussian IRT noises has been shown. 

The new selection rule for optimal regularization parameter value using non parametric 
statistics of Smimov-Kramer-von Mises ( CiJ2 -test) for the case of nongaussian IRT noises has 
been proposed. The results of numerical solution of IRT by spectral method with nongaussian 
noises demonstrates robustness and efficiency of the proposed technique. 
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Figure 1. Cumulative probability 
function for IRT noise data (1) 

and gaussian error function (2). 

15 T,oC 

10 

5 

0 

10 

y, em 0 0 x, em 

10 
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Figure 4. The restored heat flux distribution 
over conductive plate using spectral method 

for M = 7. 
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