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Abstract

Infrared thermography is commonly used as a qualitative method to investigate anomalies located
inside solid bodies; the quantitative approach to the thermographic results is less extensive.
Nevertheless in many situations (e.g. industrial quality controi or painting conditions) it is very important
to find a thermographic method to obtain quantitative informations from the infrared pictures. The
transient thermal behaviour of a circular slab with an internal air bubble is numerically and experimentally
investigated. Two different materials have been used and the results are presented for different locations
272 and sizes of the air bubble.

Nomenclature
Cp specific heat (J / Kg - K)
h convective heat transfer coefficient (W / m2-K)
L slab radius (m)
Ld defect radius (m)
La* percentual defect radius, dimensionless = 100 Ld/ 8
Pd defect depth (m)
Pd* percentual defect depth, dimensionless = 100-Pd/ S
q specific thermal flux (W / m2)
RZ dimensional coordinates (m)
R,z dimensionless coordinates = R/S,Z/S
S slab thickness (m)
Sd defect thickness (m)
Sd* percentual defect thickness, dimensionless = 100- Sd/ S
t time (s)
t Fourier number = atl§?
T temperature (°C)
Te ambient temperature ( °C)
Greek Symbols
o thermal diffusivity (m2/s)
oR.zy - LB2Y) - Te
as
A
A thermal conductivity (W/m-K)
p density (Kg / m3)

1. Introduction

Infrared thermography is commonly used in various applications as a qualitative non
destructive method of investigation; the quantitative inspection is less extensively used.
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in applications as the quality control of structures (avionic, civil and material fields) it is very
important to find a procedure to investigate not only the presence but also the position and
the dimensions of internal defects; therefore a quantitative analysis is needed.

In previous works the authors [1,2] studied the possibility of applications of infrared
thermography to detect internal inhomogeneities in solid materials.

Combined with experimental investigations, a computer code was implemented which is
based on the 3-D finite difference discretization method of unsteady thermal conduction
problem in a parallelogrammic slab with an internal air bubble.

The comparison between numerical and experimental results was only qualitative and only
for iron specimens. The thermal uneveness of the surface produced by a parallelogrammic
air bubble located inside the specimen was evident for various positions and dimensions of
the bubble.

Aim of the present work is to extend the previous results, by investigating how the thermal
distribution on the surface of the slab depends on location and thickness of the air bubble and
on the thermal conductivity .

2. Numerical method

In the present work the geometry of both the slab and the defect has axial symmetry, so that
a 2-D finite difference scheme has been used to discretize the partial differential equation for
unsteady heat conduction .

The geometry of the body sample is shown in figure 1, together with the thermal boundary
conditions. Due to the thermal symmetry of the system with respect to the central Z-axis the
radial surface (R -Zplane) represents the heat transfer in the specimen.

The general equation of heat conduction in the slab is then:
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We have solved the equation (2) by means of two different finite difference methods:
a) A.D.l. - Alternating Direction Implicit method,
b) Explicit method,
using the same time step to compare the numerical results.

The time step used in the computations has been

At'=0.8-At' . (explicit method) @)

where At'max is obtained from the infinite-norm less than 1 condition (matrix method stability
condition) applied to explicit algorithm.

in 2-D applications the A.D.l. method is unconditionally stable and more accurate than the
explicit method. In fact the discretization errors (O(....) )are:

O(AH? AZ2 At)  for explicit algorithm
O(ARF ,AZ, AF)  for AD.I. algorithm
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also the A.D.l. results have been more close to the experimental data.

To evaluate the thermal behaviour caused from the different position and thickness of the
air bubble in the specimens, we assumed:

ot
A6, = | 601 -6(5,1) and FOpg = ——2
max Sz
as reference parameters, where tyay is the time when A8 = ABpax and Abmax is the maximum
module of A@in time.
To emphasize the sign of the thermal uneveness produced by the bubble air we have not
used the module for ABmay in the next figures.

3. Experimental apparatus

The heat source is an halogen light bulb voltage-controlled in order to provide different
powers.

The lamp cone has the same diameter as the circular slab, the switching off time of the lamp
is detected by means of digital hardware triggered from the switch lamp.

The thermographic investigations have been done with an AGA Thermovision 870 operating
in the middle infrared band range (3-5 micron), the camera has a thermoelectric cooler of the
infrared sensor whose sensitivity is about 0.2 °C .

The infrared images have been recorded on video-tape and successively analyzed by using
an AGEMA digital image analysis system.

Many difficulties have been encountered to obfain an uniform heating of the slab.  In fact
small shifts of the lamp center produce high inhomogeneities in the thermal distributions in the
slab.

At the moment we are realizing a thermal flowmeter plate to allow the adjustment of the bulb
position and to evaluate the thermal heat flux released from the lamp with higher accuracy.

All specimens in the tests have been painted black with a special paint having emissivity
0.96 in the middle infrared range.

4. Results

Both numerical and experimental tests confirm the presence of a time where visibility has
maximum.

Figure 2 shows numerical results obtained for a constant adimensional thickness Sd * of
the inhomogeneity.

The results indicate that the position Pd * of the inhomogeneity inside the slab can be
univocally evaluated by knowing both A8pyaxand Fomax .

Furthermore, the different behaviour of FOmax for the two investigated slab materials

demonstrate that the Fourier number is not the dimensionless parameter suitable to
generalize the thermal behaviour of our system.

Figure 3 shows the numerical results for both Pd* and Sd* constant values; the results are
presented only for an aluminium slab.

From the analysis of the last figures, in connection with the results of figure 2, it is possible to
confirm the uniqueness of maximum visibility pair ( A6max ,Fomax)-

The experimental tests have been performed only for constant Sd * air bubble placed at
three different positions inside aluminium and white cast iron specimens.

Figure 4 compare numerical and experimental results.
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The general behaviour of experimental tests matches with the numerical results. The
quantitative comparison shows a difference between numerical and experimental results
ranging from 10 to 30 percent .

This difference can be due to experimental errors connected with the technical
characteristics of our thermocamera, with the thermal flux measurement, and with the
influence of center lamp position on the thermal pattern of the surface.

5. Conclusions

The possibility of quantitative detection of internal anomalies in metallic slabs by

thermographic methods has been investigated.

The technique is based on the radiative heating of one slab surface and on the
simultaneous infrared observation on the opposite surface.

In these conditions it seems possible to obtain always only one pair (A8max ,Fomax) from
which we can obtain the position and thickness of internal slab anomalies.

Experimental measurements confirmed the general thermal behaviour expected from the
numerical methods.

Higher precision is required to the experimental apparatus in order to confirm the
quantitative numerical results.
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Fig. 1a. Circular slab with Internal anomaly
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Fig. 1b. Two-dimensional domain used in numerical discretitation
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Fig .2. Numerical results for constant anomaly thickness
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Fig.3 . Numerical results for constant depth and for constant thickness
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Fig. 4 . Comparisons between numerical and experimental results
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