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Abstract

‘The principle of the flying spot camera, a non destructive testing system, is to heat a sample with a
ioving laser spot and to observe the time evolution of the temperature with an IR detector viewing an
aroa altached to the laser spot with a constant offset. In this paper, to obtain a better understanding of the
sxporimental data, models are developed for several cases : semi-infinite adiabatic solid, solid of finite
thickness, infinite vertical crack, effect of convective losses, effect of an optical penetration of the laser
biam, For all theses cases analytical solutions are proposed. Two experimental set-up are described :
thelr performances are discussed and some experimental results are compared with the theory.

Nomenclature

Cp heat capacity per unit volume R laser beam radius o sample absorptivity

d detectorspot size Pp laser power e sample emissivity

¢ sample thickness V  laservelocity x thermal diffusivity

h  convective heat transfer coefficient x.y,z coordinates Ao absorption depth
Limansionless parameters:

Xax/R Y'=yR e"=e/R

V*eRV/x T (seeeq.(5)) Ao*=Ao/R

Bi = hR/k  Biot number Fo = kt/R2 Fourier number Fog = xt/e2 Fourier number

1.Introduction

The alm of this paper is to present some theoretical studies and experimental data of the
photothermal camera also called flying-spot camera. lts principle is to heat a sample with a
asanning CW laser and to detect the surface infrared emission of a point following the laser spot
at a given and adjustable offset. This type of camera has been developed in the U.S.A for years
by E.J.KUBIAK [1] and more recently by R.L. THOMAS'S team from Wayne State University [2].
Sueh a system provides two main improvements with respect to the conventional stimulated
infrared thermography using uniform illumination : a very short response time making possible the
atudy of thin coatings, and a good sensitivity to interfaces perpendicular to the surface. The first
part of this paper presents some theoretical studies of the flying spot camera applications. The
giloulations are based on the use of the Green's functions. This method leads to analytical
golutions for a rather large number of cases : coating, infinite vertical crack, semi-infinite solid with
gonvective heat losses. The second part presents the experimental set-up. In the third part
80Me measurements are presented.

2.Theory
2.1.Introduction .
Lot us consider an isotropic and homogeneous sample with constant thermal characteristics an
plane boundaries. The heat transfer equation to solve is :
KAT + Plxy.z) = Coor )

The initial and boundary conditions vary with the problem to solve, but we always consider
{hat there are no heat losses on the sample's surface (except for the convection problem). To
#olve equation (1) we use the Green functions (see for example [3] p.353) which consists in
{aking a Dirac function as power density. The final solution is given by convolution of the Green
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function with the real power density distribution. The Green function that we consider is well
known ; we give its application to the moving laser heating.

2.2.The semi-infinite solid

Let us consider the half space z=0 with no heat losses on the surface and the initial
;emperature taken as the reference. The power distribution of the laser source takes the following
orm:

Pixyzl) = 20Poexpf-2[(-V)2 +y2]/R2} 2 8(z)nR? forz>0 )
where Po is the power of the laser beam, Rits radius, V its velocity, a the sample absorptivity
(we assume a zero absorption depth), (z) the Dirac function. This calculation has been made in
[4). The laser spot moving along the x-axis, the solution for all values of time is derived from the
solution for t = 0, using the formula :

T(xy.0) = T(x-vt.y,0) @)
The solution at =0, z= 0 (we only are interested by the surface temperature) is .
PO 2 —ujye vr e :
T=2g\ 7 TXYV) )
with the dimensionless temperature :

+o0

XY VY = f oxp{- 2[(X*+V*Fo)% V" H/(148F0) } T2~ m )
0

Figure 1 shows the evolution of normalized temperature (ratio of the temperature T*to the
maximum temperature T*max for a given velocity V*) vs X* for different velocities. The higher the
spot velocity, the lower the x-gradient of the temperature ; when V* tend to infinity then T*
becomes proportionnal to 1/¥X*. This means that higher is the spot velocity, closer is the
phenomenon to the 1-D cooling. :

2.3.The slab

We consider a slab (0sz<e), with no heat losses at z = 0 and,for z=¢, the following
possibilities : no heat losses (case a) or zero prescribed temperature (case b) ; these two
cases are the limits of a two-layer material, with the second layer made of respectively a perfect
insulator and a perfect conductor. Both related Green's functions are well kown and the
calculation {with the power density (2)}leads to the following dimensionless temperature :
Hoo

XY V) = J' H exp{- 2(X*+V*Fo)%(1+8Fo) } °1‘+88’;g ®)
0
[=o0 2
with:  Hs= 1+224_4(-1)"exp( -7 Fog) o

m=0(case a)or m=n{caseb).

The Fourier number related to the thickness is Fog = xt/e2. Figure 2 illustrates the temperature
profile dependence on the thickness vs X*. The upper curve is related to the insulated slab, the
median curve to the semi-infinite solid, the lower curve to the slab with prescribed temperature.
The higher the spot velocity or the thickness, the closer the three curves. This mean that the
depth of detectable defect decreases when the spot velocity increases. Note that the case a is
equivalent to an infinite thermal resistance of depth e and parallet to the surface.

2.4.The vertical crack

Let us consider the semi-infinite medium with no heat losses at the surface z=0 and an infinite
plane thermal resistance at x=X; no heat flow across the plane x=X;) ; this is the simplest model
for a vertical thermal resistance. A power density (2), gives at t=0:

- forx>Xr: TH(X*) = TC(X*) + TC(2Xr*-X7) (8)
- forx < Xr: T(X*) = T*O(X*) + T*0(2Xr*-X") - TH(X) (9)
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with Xp* = Xp/R, T*O given by (5) and T*C by (6) with :
H = 0.5+ 0.5erf{ [Xr*-X* + 8Fo(Xr*+FoV*) JN 4Fo(1 + 8Fo) } (10)

The previous figures present space distribution of the temperature ; this space distribution is
the same as a time distribution ; but it isn't true in the case of a vertical crack, because the relation
(1) remains not verified. Figure 3 presents a flying spot signal for different offsets (AX*=AX/R)
botween the laser and the detector spot (the offset is positive when the detector spot follows the
lusor spot). The laser pass througth the vertical crack at Fo = 0 ; so the detector spot pass
througth the crack at Fo = AX"/V*. This figure shows that to have the best detection you should
tako AX* between 0 and -0.5.

2.5.The semi-infinite solid with convective losses

Lat us consider the semi-infinite solid with the following boundary condition:
I

h=hT (11)

I 1s the convective heat transfer coefficient. The Green function can be found by the Laplace

transformation leading for the dimensionless temperature to an expression like (6) with:

H= 1 - BNnFo expBi2 Fo)erfd BiVFo) (12)

with the Biot number Bi= hR/k relative to the laser beam radius as the characteristical parameter
ol the convective losses. Figure 4 shows the influence of convective losses on the temperature
ispnc;e) (or time) distribution. The higher the velocity, the lower the sensivity to the convective
088508,

2.6.The semi-Infinite medium with a volume absorpti-on

To take into account the optical penetration of the laser beam into the sample, a power
distribution exp(-z/A0)/Ao (Lo absorption depth) has to be taken instead of 2 &(z) in (2). For the
gomi-infinite medium, the dimensionless temperature is given by formula (6) with :

H =1 Zexp(Z2) erfc(Z) (13)
with 2 «\/kt / 20 .The dimensionless absorption depth Ao* = 10/R is equivalent to the inverse of
the Blot number for the convection problem. Figure 5 presents the space (or time) temperature
dlistribution for several 10* for V*=100. The effects are very important and cannot be neglected

whaen Ao Is greater than 0.1 of the laser spot. The higher the velocity, the higher the effect of the
oplical penetration.

2.7.The effect of space integration - other cases

“The IR detection is made on a small area and not on a single point. This space convolution can
tlistort the measured temperature distribution and can be studied in the geometrical optics
approximation. For the semi-infinite adiabatic solid and for a square spot detector of size d, the
iritagration effect is negligible when dis smaller than R/2.

The Green function can be determined for several other cases : the wedge with prescribed
nparature or with no heat losses at its surface; the two-layer adiabatic semi-infinite solid with
‘J@@r!@@t Interface ; the semi-infinite solid with an horizontal or vertical plane thermal resistance of
inite value. All these examples show that analytical Solutions for complex problems can be
oblained with the Green function method.

3.Experimental set-up

The first experimental set-up (static detection) used is shown figure 6. The set-up consists in
an argon laser whose beam is reflected on a scanning mirror toward the sample, and in an infrared
HgGdTe detector which is focalized by a 20 cm focal length lens on the sample. The fixed spot of
the (A detector is on the laser spot trajectory. The distance between the detector lens and the
sample Is 50 cm ; the diameter of the lens is 5 cm. This leads to a theoretical temperature
ragolution of 0.2 K. The measured temperature resolution is 0.4 K for a bandwidth limit of 1.3 kHz.
Tha laser beam velocity can vary from a few cm.s-1 to a few m.s-1. The advantage of this set-up
1 10 allow the observation of the entire heating and cooling of the sample due to the laser ; and
ihe aacond set-up only observes the space variations of one given point of the temperature time
fagponge.
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Figure 7 shows a classical flying spot set-up in which the IR detector spot follows the laser
spot : this is obtained by coupling the laser beam with the IR detector by a flat elliptic mirror
which deviates the laser beam from 90°. The laser beam and the detector spot are sent together
towards the sample thanks to the scanning system. The aperture of the scanning system is 5
cm, the sample is 50 cm from it, and the detector lens is 25 ¢m farther from sample than the
scanning system. The theoretical temperature resolution in these conditions is only 0.5 Kand 1 K
measured resolution.

4.Results

Figures 810 11 present some resuilts obtained with the static detection set-up and figure 72and
13 results obtained with the flying spot set-up.

Figure 8 shows the normalized temperature profile for a sample of black plexiglas with two laser
velocities (10 and 40 cms1). The experimental parameters are : k=02W.m-1K, x=0,1 mmas1,

£= 0,95 (experimentaly measured) ; with an absorption depth of Ao* = 3/4, a good agreement
petween theory and experiment is obtained. Direct transmission measurement gives an
absortion depth for the plexiglas of 0.2 mm, in agreement with the previously reported
measurement. The maximum temperature in the experimental conditions would be 500°C for Ao =
0 instead of 50°C for 20 =3R/4.

Figure 9 shows the effect of convective losses produced by a fan on a plexiglas sample; the
jaser beam velocity is 1 cm.s-1. Curve fitting identification leads to the value h = 200 W.m.-2K-1
for the heat transfer coefficient.

Figure 10 presents the effect of a black paint on the response of a pasteboard specimen : the
normalized temperature distribution is given versus time. The laser spot velocity is 22.4 cm.s-1.
The upper curve is related to the pasteboard without paint: the curve fitting identification gives an
absorption depth of 0.1R = 30 um. The black paint has a good absorbtion: some optical
measurement give an absorption depth A0 <5 pm. The painted specimen experiences a cooling
which is faster than without paint. The experiment demonstrates that the paint effect shoudn't be
neglected. Nevertheless, a quantitative analysis of this measurement is difficult since the
variability of the paint characteristics are unkwown (emissivity, diffusivity, thickness).

Figure 11 shows the effect of thickness on a sample of (black paint) copper: the first
measurement was made with 0.5 cm thickness and the second with 0.1 mm. We can consider the
first sample as a semi-infinite adiabatic solid (lower curve) and the second one as an adiabatic
slab (upper curve). The laser beam velocity is V = 4 cm/s.

Figure 12 presents a flying spot image compared with the equivalent IR camera (obtained by
using the flying spot set-up without laser). The sample is a pasteboard of 5 cm length with a
2 cm ribbon of copper stuck in the middle of it ; some black paint covers the sample. The laser
velocity is 9.5 cm/s. The IR camera measurement (lower curve) only sees the black paint; but the
flying spot camera (upper curve) detects the pasteboard and the copper under the paint. This
experiment illustrate one interest of the flying spot camera.

5.Conclusion

The theory gives good results when it takes account of different experimental effects : effect of
optical penetration, detector space integration. It can be developed o take account of the non
infinite value of the thermal resistance, the non infinite size of a resistance. The static detection
set-up gives results which can easily be compared with the theory and helps us for the choice of
technical solution for the flying spot set-up. These last set-up must be developed to give images

and not only an isolated line. This will be soon done with some improvement of the temperature
resolution.
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